M229: Advanced Topics in Magnetic Resonance Imaging

Spring 2021: 4 Units Lectures: Tue/Thu 10:00 AM - 11:50 AM Zoom link TBD https://mrrl.ucla.edu/pages/m229

Instructors: Holden Wu, PhD (holdenwu@mednet.ucla.edu)

Kyung Sung, PhD (ksung@mednet.ucla.edu)

Office: Zoom link TBD

Course Description: This course will explore recent MRI developments that 1) have had high impact on the field, 2) involve novel pulse sequence design or image reconstruction, and/or 3) enable imaging of anatomy or function in a way that surpasses what is currently possible with any other modality. Simulations and programming exercises in MATLAB will provide hands-on experience for students. Students will propose and carry out a final project along current directions of advanced MRI research.

Prerequisites: This course is a follow-up to M219 (Principles and Applications of MRI) and is meant for students interested in pursuing research related to the development or translation of new MRI techniques.

Cou	rse Schedule:	
#1.	Mar 30, Tue	Introduction – Advanced MRI Techniques and Applications
#2.	April 1, Thu	Pulse Sequences – Rapid GRE
#3.	April 6, Tue	Pulse Sequences – RARE / Bloch Simulation MATLAB demo
#4.	April 8, Thu	Pulse Sequences - Extended Phase Graphs (EPG) / MATLAB demo
#5.	April 13, Tue	RF Pulse Design – Adiabatic Pulses
#6.	April 15, Thu	RF Pulse Design – Excitation k-space I
#7.	April 20, Tue	RF Pulse Design – Excitation k-space II / MATLAB Demo
#8.	April 22, Thu	Project Discussion
#9.	April 27, Tue	Fast Imaging – EPI, PROPELLER
#10.	April 29, Thu	Fast Imaging – Non-Cartesian Sampling I
#11.	May 4, Tue	Fast Imaging – Non-Cartesian Sampling II
#12.	May 6, Thu	Image Reconstruction – Partial k-space
#13.	May 11, Tue	Managing Motion in MRI
#14.	May 13, Thu	Image Reconstruction – Parallel Imaging I
[ISMRM 5/15 – 5/20]		
#15.	May 25, Tue	Image Reconstruction – Parallel Imaging II / Coil Compression
#16.	May 27, Thu	Compressed Sensing / Artificial Intelligence
#17.	June 1, Tue	Advanced Application Topic - TBD
#18.	June 3, Thu	Advanced Application Topic - TBD
[Final Project Presentation]		
#19.	June 7-11,	Final Presentations

Course Assignments:

- Reading book chapters and research papers
- Programming assignments x2 (MATLAB)
- Final project presentation (1 page abstract and 10+10 min oral presentation)

Grading Structure:

• Participation (10%), Homework (30%), Final Project (60%), Extra Points.

Reading List:

- Handbook of MRI Pulse Sequences. M. A. Bernstein, K. F. King, and X. J. Zhou. Elsevier Academic Press, 2004. ISBN-13: **978-0120928613**.
- Research papers as assigned