RF Pulse Design RF Pulses / Adiabatic Pulses

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2021.04.13

Class Business

• Homework 1 is due on 4/23 (Friday)

Outline

- Review of RF pulses
- Adiabatic passage principle
- Adiabatic inversion

Review of RF Pulses

Notation and Conventions

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

- ω = carrier frequency
- ω_0 = resonant frequency
- B₁(t) = complex valued envelop function

RF Pulse - Excitation

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

$$B_1(t) \cdot [\cos(\omega t)\hat{i} - \sin(\omega t)\hat{j}]$$

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Rotating Frame

Rotating Frame Definitions

$$\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix} \qquad \vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix} \qquad B_{z'} \equiv M_z$$

$$\vec{M}_{lab}(t) = R_Z(w_0 t) \cdot \vec{M}_{rot}(t)$$
$$\vec{B}_{lab}(t) = R_Z(w_0 t) \cdot \vec{B}_{rot}(t)$$
$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \quad \textcircled{} \quad \underbrace{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$
where $\vec{B}_{eff} = \vec{B}_{rot} + \begin{pmatrix} \vec{w}_{rot} \\ \gamma \end{pmatrix}$ fictitious field
$$\vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega \end{pmatrix}$$

Bloch Equation (Rotating Frame)

$$\vec{B}_{eff} = \vec{B}_{rot} + \frac{\vec{w}_{rot}}{\gamma}$$

$$\vec{B}_{lab} = \begin{pmatrix} B_1(t)\cos\omega_0 t \\ B_1(t)\sin\omega_0 t \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ B_1(t) \\ B_0 \end{pmatrix}$$

Assume real-valued $B_1(t)$

$$\vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix}$$

To the board ...

Bloch Equation with Gradient

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix} \longrightarrow \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} + G_z z \end{pmatrix}$$

Bloch Equation (at on-resonance)

$$\begin{aligned} \frac{d\vec{M}_{rot}}{dt} &= \vec{M}_{rot} \times \gamma \vec{B}_{eff} \\ \text{where} \quad \vec{B}_{eff} &= \begin{pmatrix} B_1(t) \\ 0 \\ B_0 & \omega' + G_z z \end{pmatrix} \\ \frac{d\vec{M}}{dt} &= \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M} \\ \omega(z) &= \gamma G_z z \qquad \omega_1(t) = \gamma B_1(t) \end{aligned}$$

To the board ...

B1 Variations

- In MRI, B1 field is not always uniform across the imaging volume
- B1 inhomogeneity can cause:
 - Image shading
 - Incomplete saturation (e.g. in fat suppression)
 - Incomplete inversion (e.g. CSF suppression, myocardium suppression in cardiac scar imaging)
 - Inaccurate/imprecise quantification in T1 mapping

 It is highly desirable if we can excite tissue homogeneously and produce a uniform flip angle throughout

→ Adiabatic Pulses!

"Adiabatic pulses are a special class of RF pulses that can excite, refocus or invert magnetization vectors uniformly, even in the presence of a spatially nonuniform B1 field."

Adiabatic Passage Principle

Adiabatic Pulses

- A special class of RF pulses that can achieve uniform flip angle
- Flip angle is independent of the applied B1 field

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Slice profile of an adiabatic pulse is obtained using Bloch simulations
- Can be used for excitation, inversion and refocusing

Adiabatic vs. Non-Adiabatic Pulses

Adiabatic Pulses:

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Amplitude and frequency/phase modulation
- Long duration (8-12 ms)
- Higher B1 amplitude (>12 μT)
- Generally NOT multi-purpose (inversion pulse cannot be used for refocusing, etc.)

Non-Adiabatic Pulses:

$$\theta = \int_0^T B_1(\tau) d\tau$$

- Amplitude modulation, constant carrier frequency (constant phase)
- Short duration (0.3 ms to 1 ms)
- Lower B1 amplitude
- Generally multi-purpose

Adiabatic Pulses

Frequency modulated pulses:

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t') dt'}$$
envelop
sweep

• Or phase modulation:

$$B_1(t) = A(t) \exp^{-i\phi(t)}$$

Bloch Equation (at on-resonance)

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t') dt'}$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}_{eff}$$

where
$$\vec{B}_{eff} = \begin{pmatrix} A(t) \\ 0 \\ B_0 & \frac{\omega}{\gamma} + \frac{\omega_1(t)}{\gamma} \end{pmatrix}$$

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega_1(t) & 0\\ -\omega_1(t) & 0 & \gamma A(t)\\ 0 & -\gamma A(t) & 0 \end{pmatrix} \vec{M}$$

Magnetization Plot

To the board ...

- At the end of the pulse, all the magnetization is in the transverse plane → so we have adiabatic excitation!
- This is also called an adiabatic half passage (AHP)

Adiabatic Inversion

 An adiabatic inversion requires an adiabatic full passage (AFP) pulse:

Adiabatic Inversion

Design of Adiabatic Inversion

- General equation for an adiabatic pulse:

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t') dt'}$$

- Many different types of adiabatic pulses can be designed by choosing different amplitude and frequency modulation functions
- The most famous one is...

The Hyperbolic Secant Inversion Pulse!

Hyperbolic Secant Pulse Equations

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t') dt'}$$

where

 $A(t) = A_0 \operatorname{sech}(\beta t)$ $\omega_1(t) = -\mu\beta \operatorname{tanh}(\beta t)$

- A₀: peak amplitude (µT)
- β : frequency modulation parameter (rad/s)
- μ: phase modulation parameter (dimensionless)

Handbook of MRI Pulse Sequences, Ch 6.2, pp 194-195

Hyperbolic Secant Pulse Example

Pulse Parameters: $A_0 = 12 \ \mu T$ $\mu = 5$ $B = 672 \ rad/s$ Duration = 10.24 ms

Comparing Hyperbolic Secant with an AFP Example

Some Examples of Other Adiabatic Inversion Pulses

Pulse Name	A(t)	ω ₁ (t)
Lorentz	$\frac{1}{1+\beta\tau^2}$	$\frac{\tau}{1+\beta\tau^2}+\frac{1}{\sqrt{\beta}}\tan^{-1}(\sqrt{\beta}\tau)$
HS	sech($eta au$)	$\frac{\tanh(\beta \tau)}{\tanh(\beta)}$
Gauss	$\exp\left(-rac{eta^2 au^2}{2} ight)$	$\frac{\operatorname{erf}(\beta\tau)}{\operatorname{erf}(\beta)}$
Hanning	$\frac{1+\cos(\pi\tau)}{2}$	$\tau + \frac{4}{3\pi} \sin(\pi\tau) \left[1 + \frac{1}{4} \cos(\pi\tau) \right]$
HSn ^c (<i>n</i> =8)	sech($eta au^n$)	$\int { m sech}^2(eta au^n) { m d} au$
Sin40 ^d (<i>n</i> =40)	$1 - \left \sin^n \left(\frac{\pi \tau}{2} \right) \right $	$\tau = \int \sin^n \left(\frac{\pi \tau}{2}\right) \left(1 + \cos^2 \left(\frac{\pi \tau}{2}\right)\right) d\tau$

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

Some Examples of Other Adiabatic Inversion Pulses

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

What Will Inversion Profile Look Like?

Inversion Profiles

- The inversion profile typically calculated using Bloch simulation of the RF pulse (will be covered later) shows us the inversion efficiency and <u>RF</u> bandwidth
- The inversion efficiency depends strongly on the B1 amplitude (as well as pulse duration, T1, T2 and pulse shape)
- For the hyperbolic secant pulse,

RF spectral bandwidth = $\mu\beta$

 $B_{1max} >> (\beta \sqrt{\mu})/\gamma$ (B₁ threshold for adiabaticity)

Hyperbolic Secant: Adiabatic Property

Hyperbolic Secant: Adiabatic Property

Original Pulse (100%) $B1 = 12 \mu T$

0

5

Time (ms)

10

0

Frequency (Hz)

2000

4000

125% Amplified Pulse $B1 = 15 \mu T$

150% Amplified Pulse $B1 = 18 \mu T$

Comments

- Many envelope/modulation functions work
- If a range of adiabaticity is required, optimization can help reduce pulse length
- Hyperbolic Sech needs to be truncated, which can affect the overall performance

Thank You!

- Further reading
 - Read "Adiabatic Refocusing Pulses" p.200-212
 - Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, Vol. 10, 423-434 (1997)
- Acknowledgments
 - John Pauly's EE469b (RF Pulse Design for MRI)

Kyung Sung, PhD ksung@mednet.ucla.edu https://mrrl.ucla.edu/sunglab/