Compressed Sensing

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 5/19/2022

Today's Topics

- Parallel Imaging
 - SMASH review
 - Auto-SMASH
 - GRAPPA
- Compressed sensing
 - Compressibility or sparsity
 - Incoherent measurement
 - Reconstruction

Parallel Imaging (GRAPPA)

GRAPPA

- Coil sensitivities are
 - Smooth in image space
 - Local in k-space

 $m(\vec{x})C_{j}(\vec{x})$

GRAPPA

 Missing information is implicitly contained by adjacent data

GRAPPA Reconstruction

How do we find missing data from these samples?

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$
missing data
for each coil weights neighborhood data
for each coil

Auto-Calibration

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

Auto-Calibration

- Assume there is a fully sampled region
- We have samples of what the GRAPPA synthesis equations should produce

Invert this to solve for GRAPPA weights

Auto-Calibration

- Calibration area has to be larger than the GRAPPA kernel
- Each shift of kernel gives another equation

Here, 3x3 kernel, 5x5 calibration area gives 9 equations

Auto-Calibration

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

Write as a matrix equation

 $\begin{array}{ll} {\sf GRAPPA}\\ {\sf Coefficients}\\ M_{k,c} = M_A \cdot a_k\\ {\sf Calibration} & {\sf Neighborhood}\\ {\sf Data} & {\sf Data} \end{array}$

• GRAPPA weights are:

$$a_k = (M_A^* M_A + \lambda I)^{-1} M_A^* M_{k,c}$$

GRAPPA - Synthesis

Auto-Calibration Parallel Imaging

coil = 1

ACS (Auto-Calibration Signal) lines

$$\sum_{l=1}^{L} S_{l}^{ACS}(k_{y} - m\Delta k_{y}) = \sum_{l=1}^{L} n(l, m)S_{l}(k_{y})$$

GRAPPA formula to reconstruct signal in one channel

$$S_{j}(k_{y} - m\Delta k_{y}) = \sum_{l=1}^{L} \sum_{b=0}^{N_{b}-1} n(j, b, l, m)S_{l}(k_{y} - bA\Delta k_{y})$$

A: Acceleration factor n(j,b,l,m): GRAPPA weights

Griswold et al. MRM, 47(6):1202-1210 (2002)

GRAPPA Reconstruction

Missing k-space

GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Considerations of GRAPPA

- Calibration region size
- GRAPPA kernel size
- Sample geometry dependence

GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Summary

- Parallel imaging utilizes coil sensitivities to increase the speed of MRI
- Cases for parallel imaging
 - Higher patient throughput,
 - Real-time imaging/Interventional imaging
 - Motion suppression
- Cases against parallel imaging
 - SNR starving applications

Fast MRI Techniques

- Many reconstruction methods minimize aliasing artifacts by exploiting <u>information</u> <u>redundancy</u> (or <u>prior knowledge</u>)
 - Parallel imaging

Donoho, IEEE TIT, 2006 Candes et al., Inverse Problems, 2007

 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

We still can find 8 unknowns!

Compressed Sensing MRI

k-space

Inverse Fourier Transform Φ⁻¹

 $\mathbf{x} = \Phi^{-1}\mathbf{y}$

Compressed Sensing MRI

k-space

Compressed Sensing MRI

k-space

Inverse Fourier Transform Φ^{-1}

Choose the most compressible image matching data (*systematic optimization*)

Math Background

L0-norm $(|x|_0)$: a number of non-zero coefficients L1-norm $(|x|_1)$: a sum of absolute values of coefficients

L2-norm (|x|₂): a sum of squared values of coefficients

L1-norm minimize $|\Psi x|_1$

CS-MRI Reconstruction

minimize F(x): $|y - \Phi x|^2 + R(x)$

y: k-space w: Wavelet x: Image $\mathbf{y'} = \mathbf{FT}(\mathbf{x})$ $\mathbf{x} = \mathbf{\Psi}^{-1}\mathbf{W}$

Three Tenets of CS

• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Compressibility Constraint

minimize F(x): $|y - \Phi x|^2 + R(x)$

Compressibility Constraint

- $R(x) = \lambda |x|_1$
- $R(x) = \lambda |\Psi x|_1$
- $R(x) = \lambda H(x)$
- $R(x) = \lambda |x|_*$

(Identity Transform)

(Wavelet Transform)

(Total Variation)

(Rank or Nuclear Norm)

• Many more...

Wavelet Transform

 Natural images are compressible using wavelet transforms

Image Compression Standard: JPEG2000

Uncompressed 378 KiB 1:1

> JPEG JFIF 11.2 KiB 1:33.65 IJG q 30

JPEG 2000 11.2 KiB 1:33.65

Images from Wikipedia

Wavelet Transform

MR images are mostly compressible using wavelet

transforms

Wavelet Transform

Inverse Wavelet Transform 10% Largest Coefficients

Wavelet Transform

MR images are mostly compressible using wavelet transforms

10% Largest Coefficients

Total Variation

CS-MRI Reconstruction

minimize F(x): $|y - \Phi x|_2^2 + R(x)$

- Minimizing F(x) is non-trivial since R(x) is not differentiable
 - Linear programming is challenging due to high computational complexity
- Simple gradient-based algorithms have been developed:
 - Re-weighted L1 / FOCUSS
 - IST / IHT / AMP / FISTA
 - Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, et al. Commun. Pure Appl. Math. 2004 Elad M, et al. in Proc. SPIE 2007 T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

To the board ...

L1-norm minimize $|\Psi x|_1$

CS-MRI Reconstruction

minimize F(x): $|y - \Phi x|^2 + R(x)$

y: k-space w: Wavelet x: Image $\mathbf{y'} = \mathbf{FT}(\mathbf{x})$ $\mathbf{x} = \mathbf{\Psi}^{-1}\mathbf{W}$

Summary So Far...

minimize $F(x): |y - \Phi x|_2^2 + R(x)$ DataCompressibilityConsistencyConstraint

Compressibility Constraint Incoherent Measurement Reconstruction

Cardiac Function

- <u>Reconstruction Domain</u>:
 x (dynamic 2D MRI in x-f space)
- <u>Compressibility Constraint</u>: |x|1: sparsity in x-f
- <u>Incoherent Measurement</u>: variable density random undersampling

minimize F(x): $|y - \Phi x|_2^2 + \lambda |x|_1$

• <u>Reconstruction</u>: non-linear CG L1 / FOCUSS

M. Lustig, et al., ISMRM 2006 H. Jung, et al., Physics in Medicine and Biology 2007 H. Jung, et al., MRM 2009

Cardiac Function (k-t FOCUSS)

k-t BLAST

k-t FOCUSS

k-t FOCUSS with ME/MC

H. Jung, et al., MRM 2009

Cardiac Function (k-t SLR)

• <u>Compressibility Constraint:</u>

$$|x|_* = \sum_i (\Sigma_{i,i}) \qquad x = U\Sigma V^*$$

S.G. Lingala, et al., IEEE TMI 2011

Cardiac Function (k-t ISD)

- <u>Compressibility Constraint</u>: W: Diagonal weighting matrix (known support in x-f)
- <u>Incoherent Measurement</u>: variable density random undersampling

minimize F(x): $|y - \Phi x|_2^2 + \lambda |Wx|_1$

<u>Reconstruction</u>: FOCUSS

D. Liang, et al., MRM 2012

Phase Contrast

Reconstruction Domain:

x1 (flow-compensated)x2 (flow-encoded)

- <u>Compressibility Constraint</u>: $H(x_i)$: Total Variation $|x_1 - x_2|_1$: Complex Difference
- Incoherent Measurement: uniform random undersampling

minimize $F(x_1)$: $|y - \Phi x_1|_2^2 + \lambda_1 H(x_1) + \lambda_2 |x_1 - x_2|_1$ minimize $F(x_2)$: $|y - \Phi x_2|_2^2 + \lambda_1 H(x_2) + \lambda_2 |x_1 - x_2|_1$

<u>Reconstruction</u>: Split Bregman

Y Kwak. et al., MRM 2012

Phase Contrast (Complex

Y Kwak. et al., MRM 2012

Dynamic CE-MRA

• <u>Reconstruction Domain</u>:

 x_i , i = 1,2,3, ... (dynamic 3D MRI)

• <u>Compressibility Constraint:</u>

 $H(x_i)$: Total Variation | $|x_1| - |x_2| |_1$: Magnitude Difference

 Incoherent Measurement: variable density Poisson disk undersampling

> minimize $F(x_1)$: $|y - \Phi x_1|^2 + \lambda_1 H(x_1) + \lambda_2| |x_1| - |x_2| |_1$ minimize $F(x_2)$: $|y - \Phi x_2|^2 + \lambda_1 H(x_2) + \lambda_2| |x_1| - |x_2| |_1$

• <u>Reconstruction</u>: Split Bregman

Rapacchi et al. MRM 2014

Dynamic CE-MRA (Mag. Diff.)

- 12X acceleration (1.1 x 1.1 x 2 mm²)
- 6 volumes (instead of 1) in a single breath-hold

Rapacchi et al. MRM 2014

View Sharing vs. CS

TWIST ($T_{fprint} = 7.94 \text{ s}$) view-sharing acceleration CS-TWIST (T_{fprint} = 2.89 s) CS acceleration

Rapacchi et al. Int. Soc. Mag. Res. Angio. 2013

View Sharing vs. CS

Rapacchi et al. Int. Soc. Mag. Res. Angio. 2013

HiSub CS (R=10.7)

Matrix size = 360 X 360 X 240 Spatial resolution = 0.9 X 0.9 X 0.6 mm

High-Frequency Subband CS

Original

Parallel Imaging (R=5.8)

L1 SPIRiT (R=10.7) Variable Density PD HiSub CS (R=10.7)

K. Sung, et al. MRM 2013

Liver DCE Imaging (R = 12)

Matrix size = 260 X 202 X 60 Temporal res = 4 sec and # temporal phases = 8 32 channel torso coil

State-of-the-Art CS-MRI

- Reducing possible reconstruction failure
 - Improve sparse transformations
 - Develop k-space undersampling schemes
- Integrating CS with DL/parallel imaging
 - Develop compatible undersampling patterns
 - Develop reconstruction methods

State-of-the-Art CS-MRI

- Methods to evaluate CS reconstructed images
 RMSE / SSIM / Mutual Information
- Reducing reconstruction time
 - Reduce computational complexity
 - Parallelize reconstruction problems
- Developing stable reconstruction algorithms
 - Minimize / avoid the number of regularization parameters

Further Reading

- Original Compressed Sensing
 - https://ieeexplore.ieee.org/document/1580791
 - https://ieeexplore.ieee.org/document/1614066
- Compressed Sensing MRI
 - <u>https://ieeexplore.ieee.org/abstract/document/</u>
 <u>4472246</u>

• Next time

- Artificial Intelligence by Dr. Zabihollahy

Kyung Sung, PhD ksung@mednet.ucla.edu https://mrrl.ucla.edu/sunglab/