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Today’s Topics

• Parallel Imaging 

- SMASH review 

- Auto-SMASH 

- GRAPPA 

• Compressed sensing 

- Compressibility or sparsity 

- Incoherent measurement 

- Reconstruction



Parallel Imaging 
(GRAPPA)



GRAPPA

• Coil sensitivities are  
- Smooth in image space 

- Local in k-space

m(~x)Cj(~x) M(~k) ⇤ Cj(~k)
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GRAPPA

• Missing information is implicitly contained by 
adjacent data

ky

kx

ky

kx

ky

kx

M(~k) ⇤ C1(~k) M(~k) ⇤ C2(~k)

Coil 1 Coil 2 Coil L

M(~k) ⇤ CL(~k)

…



GRAPPA Reconstruction

• How do we find missing data from these 
samples?

weights
neighborhood data  
for each coil

missing data 
for each coil

m̂k(kx, ky) =
X

i,j,k

ai,j,k ·mk(kx + i�kx, ky + j�ky)



Auto-Calibration

m̂k(kx, ky) =
X

i,j,k

ai,j,k ·mk(kx + i�kx, ky + j�ky)



Auto-Calibration

• Assume there is a fully sampled region 

• We have samples of what the GRAPPA synthesis 
equations should produce 

• Invert this to solve for GRAPPA weights

ky

kx

fully sampled  
region



Auto-Calibration

• Calibration area has to be larger than the 
GRAPPA kernel 

• Each shift of kernel gives another equation 

• Here, 3x3 kernel, 5x5 calibration area gives 9 
equations



Auto-Calibration

• Write as a matrix equation 

• GRAPPA weights are:

Calibration 
Data

Neighborhood 
Data

GRAPPA 
Coefficients

Mk,c = MA · ak

ak = (M⇤
AMA + �I)�1M⇤

AMk,c

m̂k(kx, ky) =
X

i,j,k

ai,j,k ·mk(kx + i�kx, ky + j�ky)



GRAPPA - Synthesis



Auto-Calibration Parallel Imaging
coil = 1

Griswold et al. MRM, 47(6):1202-1210 (2002)

coil = L
. ..

ACS (Auto-Calibration Signal) lines

ACS
GRAPPA formula to reconstruct signal  
in one channel

A: Acceleration factor 
n(j,b,l,m): GRAPPA weights



GRAPPA Reconstruction

Reconstruct  
Missing k-space 

Sum of Squares



GRAPPA

• Compute GRAPPA weights from calibration 
region 

• Compute missing k-space data using the 
GRAPPA weights 

• Reconstruct individual coil images 

• Combine coil images



Considerations of GRAPPA 

• Calibration region size 

• GRAPPA kernel size 

• Sample geometry dependence



GRAPPA

- Compute GRAPPA weights from calibration 
region 

- Compute missing k-space data using the 
GRAPPA weights 

- Reconstruct individual coil images 
- Combine coil images



Summary

- Parallel imaging utilizes coil sensitivities to 
increase the speed of MRI 

- Cases for parallel imaging 
• Higher patient throughput,  
• Real-time imaging/Interventional imaging 
• Motion suppression 

- Cases against parallel imaging 
• SNR starving applications



Fast MRI Techniques

• Many reconstruction methods minimize 
aliasing artifacts by exploiting information 
redundancy (or prior knowledge) 
- Parallel imaging 

- Compressed sensing

Donoho, IEEE TIT, 2006
Candes et al., Inverse Problems, 2007



What is Compressed 
Sensing?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis
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What is Compressed 
Sensing?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

x = Φ-1y 

4 Equations 
8 Unknowns

Sparse or 
Compressible

Incoherent
Measurement



What is Compressed 
Sensing?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

4 Equations 
8 Unknowns

Sparse or 
Compressible

Incoherent
Measurement

We still can find 8 unknowns!



Compressed Sensing MRI

Inverse Fourier  
Transform Φ-1

k-space Image

x = Φ-1y 



Compressed Sensing MRI
k-space Image

x = Φ-1y 

Inverse Fourier  
Transform Φ-1



Compressed Sensing MRI

x = Φ-1y 

Inverse Fourier  
Transform Φ-1

k-space Image

Choose the most compressible
image matching data 
(systematic optimization)



Math Background
L0-norm (|x|0): a number of non-zero coefficients

L1-norm (|x|1): a sum of absolute values of  
                        coefficients
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L2-norm (|x|2): a sum of squared values of  
                        coefficients



CS-MRI Reconstruction

x: Imagey: k-space

w = Ψx

w: Wavelet

|y - Φx|2 < Ɛ

L1-norm
minimize |Ψx|1



CS-MRI Reconstruction

x: Imagey: k-space w: Wavelet

x = Ψ-1wy’ = FT(x)

minimize F(x): |y - Φx|2  +  R(x)



• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Three Tenets of CS

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)2



Compressibility Constraint
minimize F(x): |y - Φx|2  +  R(x)

Compressibility 
Constraint

2

• R(x) = λ|x|1                (Identity Transform) 

• R(x) = λ|Ψx|1                      (Wavelet Transform) 

• R(x) = λH(x)               (Total Variation) 

• R(x) = λ|x|*                 (Rank or Nuclear Norm) 

• Many more…



Wavelet Transform

• Natural images are compressible using 
wavelet transforms

Image Compression Standard: JPEG2000 

Images from Wikipedia



Wavelet Transform

10% Largest 
Coefficients

Wavelet 
Transform

Inverse 
Wavelet 

Transform

MR images are mostly compressible using wavelet 
transforms



MR images are mostly compressible using wavelet 
transforms

Wavelet Transform

10% Largest 
Coefficients

Wavelet 
Transform



Total Variation
H(x) =

X

i,j

q
|xi+1,j � xi,j |2 + |xi,j+1 � xi,j |2

Total 
Variation

Dx Dy

Dx Dy

+

{
⌃



CS-MRI Reconstruction
minimize F(x): |y - Φx|2  +  R(x)

• Minimizing F(x)  is non-trivial since R(x) is not differentiable 
- Linear programming is challenging due to high 

computational complexity 

• Simple gradient-based algorithms have been developed: 
- Re-weighted L1 / FOCUSS 

- IST / IHT / AMP / FISTA 

- Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, 
et al. Commun. Pure Appl. Math. 2004

Elad M, et al. in Proc. SPIE 2007
T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

2



To the board ...



CS-MRI Reconstruction

x: Imagey: k-space

w = Ψx

w: Wavelet

|y - Φx|2 < Ɛ

L1-norm
minimize |Ψx|1



CS-MRI Reconstruction

x: Imagey: k-space w: Wavelet

x = Ψ-1wy’ = FT(x)

minimize F(x): |y - Φx|2  +  R(x)



Summary So Far…

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)
2

Compressibility Constraint 

Incoherent Measurement 

Reconstruction



Cardiac Function

• Reconstruction Domain:  
x (dynamic 2D MRI in x-f space) 

• Compressibility Constraint: 
|x|1: sparsity in x-f

• Incoherent Measurement: variable density random 
undersampling 

minimize F(x): |y - Φx|2 + λ|x|1 

• Reconstruction: non-linear CG L1 / FOCUSS
2

M. Lustig, et al., ISMRM 2006 
H. Jung, et al., Physics in Medicine and Biology 2007 

H. Jung, et al., MRM 2009



Cardiac Function (k-t FOCUSS)

H. Jung, et al., MRM 2009

k-t BLAST

k-t FOCUSS

k-t FOCUSS 
with ME/MC



Cardiac Function (k-t SLR)

• Compressibility Constraint:

S.G. Lingala, et al., IEEE TMI 2011

x-y x-t x-f x-KLT

|x|⇤ =
X

i

(⌃i,i) x = U⌃V ⇤



Cardiac Function (k-t ISD)
• Compressibility Constraint: 

W: Diagonal weighting matrix (known support in x-f)

• Incoherent Measurement: variable density random 
undersampling 

minimize F(x): |y - Φx|2 + λ|Wx|1 

• Reconstruction: FOCUSS
2

D. Liang, et al., MRM 2012



Phase Contrast
• Reconstruction Domain:  

x1 (flow-compensated) 
x2 (flow-encoded)

• Compressibility Constraint: 
H(xi) : Total Variation 
|x1 - x2|1 : Complex Difference

• Incoherent Measurement: uniform random undersampling 

minimize F(x1): |y - Φx1|2 + λ1H(x1)  + λ2|x1 - x2|1 

   minimize F(x2): |y - Φx2|2 + λ1H(x2)  + λ2|x1 - x2|1 

• Reconstruction: Split Bregman

2

2

Y Kwak. et al., MRM 2012



Phase Contrast (Complex 

Y Kwak. et al., MRM 2012



Dynamic CE-MRA

• Reconstruction Domain:  
xi, i = 1,2,3, … (dynamic 3D MRI) 

• Compressibility Constraint: 
H(xi) : Total Variation 
| |x1| - |x2| |1 : Magnitude Difference

• Incoherent Measurement: variable density Poisson disk 
undersampling 

minimize F(x1): |y - Φx1|2 + λ1H(x1)  + λ2| |x1| - |x2| |1 

   minimize F(x2): |y - Φx2|2 + λ1H(x2)  + λ2| |x1| - |x2| |1 

• Reconstruction: Split Bregman
Rapacchi et al. MRM 2014



Dynamic CE-MRA (Mag. Diff.)

Corona
l  

MIP 

Axial  
MIP

12.8-24.6s(RGB)

• 12X acceleration (1.1 x 1.1 x 2 mm2) 
• 6 volumes (instead of 1) in a single breath-hold

TT=6.9s 12.8s 
(➞Red)

18.7s 
(➞Green)

24.6s 
(➞Blue)

Rapacchi et al. MRM 2014



View Sharing vs. CS
TWIST (Tfprint = 7.94 s) 

view-sharing acceleration
CS-TWIST (Tfprint = 2.89 s) 

CS acceleration

Rapacchi et al. Int. Soc. Mag. Res. Angio. 2013



View Sharing vs. CS
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High-Frequency Subband CS

Original Parallel Imaging (R=5.8)

L1 SPIRiT (R=10.7) 
Variable Density PD

HiSub CS  
(R=10.7)

Matrix size = 360 X 360 X 240 
Spatial resolution = 0.9 X 0.9 X 0.6 mm



High-Frequency Subband CS
Original Parallel Imaging (R=5.8)

L1 SPIRiT (R=10.7)  
Variable Density PD

HiSub CS (R=10.7)

7 min 30 sec

42 sec

K. Sung, et al. MRM 2013



Liver DCE Imaging (R = 12)

Matrix size = 260 X 202 X 60 
Temporal res = 4 sec and # temporal phases = 8

32 channel torso coil



State-of-the-Art CS-MRI

• Reducing possible reconstruction failure 
- Improve sparse transformations  

- Develop k-space undersampling schemes 

• Integrating CS with DL/parallel imaging 
- Develop compatible undersampling patterns 

- Develop reconstruction methods



State-of-the-Art CS-MRI

• Methods to evaluate CS reconstructed images 
- RMSE / SSIM / Mutual Information 

• Reducing reconstruction time 
- Reduce computational complexity 

- Parallelize reconstruction problems 

• Developing stable reconstruction algorithms 
- Minimize / avoid the number of regularization 

parameters



Further Reading

• Original Compressed Sensing 
- https://ieeexplore.ieee.org/document/1580791 
- https://ieeexplore.ieee.org/document/1614066 

• Compressed Sensing MRI 
- https://ieeexplore.ieee.org/abstract/document/

4472246



Thanks!

• Next time 
- Artificial Intelligence by Dr. Zabihollahy

Kyung Sung, PhD 

ksung@mednet.ucla.edu 

https://mrrl.ucla.edu/sunglab/


