Fast Imaging Trajectories: Non-Cartesian Sampling (2)

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2023.05.04

Department of Radiological Sciences

David Geffen School of Medicine at UCLA

Class Business

- Homework 1 solutions
- Homework 2 due 5/5 Fri
- Final project
 - Proposal due 5/8 Mon
 can send us a draft to get feedback
 - Abstract due 6/8 Thu
 - Presentations on 6/13 Tue
- Office hours

Outline

- Spiral Trajectory
- Non-Cartesian 3D Trajectories
 - 3D stack of radial
 - 3D radial
 - 3D cones
- Non-Cartesian Image Reconstruction
 - Gridding reconstruction
 - Gradient measurement
 - Off-resonance correction

Spirals

"THE" non-Cartesian trajectory

Highly robust to motion/flow effects

Very fast!

- optimal use of gradients in 2D
- can acquire one image in ~100 ms

Spirals: Sampling Requirements

N interleaves

 $2 k_{r,max} = 1 / dx$

dk = 1 / FOV

Design 1 interleaf and rotate

Subject to HW limits

Spirals: Gradient Design

k-space trajectory

Gradients vs. time

k-space pos vs. time

Slew rate vs. time

Spirals: Image Reconstruction

Gridding Algorithm

Spirals: Image Reconstruction

Spirals: Image Reconstruction

Follow with 2D Fourier Transform ...

Spirals: Gradient Delays

2 sample delay

1 sample delay

calibrated

Spirals: Off-Resonance Effects

 $N_{intlv} = 8$

 $T_{rd} = 26.67 \text{ ms}$

 $N_{intlv} = 16$

 $T_{rd} = 13.41 \text{ ms}$

 $N_{intlv} = 48$

 $T_{rd} = 4.61 \text{ ms}$

Spirals: Practical Considerations

Trajectory design

Gradient waveform calibration

k-Space density compensation

Off-resonance correction

Fat suppression

Gridding reconstruction

applies to non-Cartesian MRI in general

Spirals: Pros and Cons

Pros

- Very fast (up to single shot)
- Very short TE
- Robust to motion/flow effects

Cons

- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

Spirals: Real-Time Cardiac MRI

- Healthy subject; 1.5 T; 8-ch array
- Golden-angle ordering
- Spiral 2D GRE; 8-mm slice
- Spatial resolution = 1.6 mm
- SPIRiT recon with R = 2
- 40 cm, 1.6 mm
- 250x250 matrix @ 6 fps
- 12-fold reduction in #TRs (vs. 2DFT)
- 8-TR sliding window display (16 fps)

Spirals: 3D LGE MRI

3D Spiral IR-GRE

- 6-interleaf VD spiral
- 7.5-ms readout
- 90 x 90 x 11 matrix
- outer volume suppr
- water-only RF exc
- TR = 15.48 ms
- 8-HB BH scan

Reconstruction

- SPIRiT (R = 2)
- ~5-sec recon

3D Non-Cartesian Sampling

3D Stack of Stars

3D Stack of Rings

3D Cones

and much more ...

3D Stack-of-Radial

aka Stack-of-Stars

<u>Pros</u>

- Straightforward extension of radial
- Robust to motion
- Can tolerate a lot of undersampling

Cons

- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

3D Stack-of-Radial: Liver MRI

3D Cartesian MRI

Insufficient breath-holding

Free-breathing 3D Stack-of-Radial MRI

Sagittal

courtesy of Tess Armstrong

3D Radial

Pros

- Robust to motion (get DC every TR)
- Can tolerate a lot of undersampling
- Half-spoke PR has very short TE

Cons

- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

3D Radial: Coronary MRA

Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence (1.0 mm)³ spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

3D Cones

Pros

- Very fast (3-8x vs. Cartesian)
- Very short TE
- Flexible readout length
- Robust to motion/flow effects

Cons

- May have mixed contrast
- Sensitive to gradient delays
- Sensitive to off-resonance effects

3D Cones: Coronary MRA

Multi-Phase Thin-Slab MIP Reformats

Wu HH et al., MRM 2013; 69: 1083-1093

3D Cones: Hi-res CMRA

Thin-Slab MIP Reformats: 0.8 mm isotropic

(b)

Non-Cartesian Image Reconstruction

- Gridding reconstruction
- Gradient measurement
- Off-resonance correction

MRI Signal Equation

$$s(t) = \iint_{X,Y} m(x,y) \cdot \exp(-i2\pi \cdot [k_x(t) x + k_y(t) y]) dx dy$$
$$= \mathcal{F}\mathcal{T}(m(x,y)) = M(k_x(t), k_y(t))$$

General definition of *k*-space:

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau, \quad k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau$$

MRI Reconstruction

$$m(x,y) = \mathcal{F}\mathcal{T}^{-1}(M(k_x, k_y))$$

$$m(x,y) = \iint_{k_x, k_y} M(k_x, k_y) \cdot \exp(i2\pi \cdot [k_x x + k_y y]) \, dk_x \, dk_y$$

simple for Cartesian (k_x, k_y) to Cartesian (x, y): 2D FFT time consuming for non-Cartesian (k_x, k_y) to Cartesian (x, y)

Non-Cartesian Reconstruction

- Inverse Fourier transform
 - aka conjugate phase reconstruction
- Gridding (+FFT)¹
 - grid driven interpolation
 - data driven interpolation (more popular)
 - forward and reverse (inverse)
- Non-uniform FFT (NUFFT)²
- Block Uniform ReSampling (BURS)³

```
<sup>1</sup> O'Sullivan JD, IEEE TMI 1985; 4: 200-207
```

² Fessler JA et al., IEEE TSP 2003; 51: 560-574

³ Rosenfeld D, MRM 2002; 48: 193-202

Gridding: Basic Idea

convolve each acquired data point with kernel $C(k_x, k_y)$ resample the convolution onto Cartesian grid points 2D inverse FFT; de-apodization and FOV cropping

Gridding: Basic Math

Sampling pattern:
$$S(k_x,k_y)=\sum_j^2\delta(k_x-k_{x,j},k_y-k_{y,j})$$
 Convolution kernel: $C(k_x,k_y)$ Grid: $\mathrm{III}(\frac{k_x}{\Delta k_x},\frac{k_y}{\Delta k_y})$

Grid: III
$$(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y})$$

Gridding recon:

$$\hat{M}(k_x,k_y) = [(M(k_x,k_y) \cdot S(k_x,k_y)) * C(k_x,k_y)] \cdot \text{III}(\frac{k_x}{\Delta k_x},\frac{k_y}{\Delta k_y})$$

$$\text{non-Cartesian dataset} \quad \text{interpolation} \quad \text{resample to grid}$$

$$\hat{m}(x,y) = \left[(m(x,y) * s(x,y)) \cdot c(x,y) \right] * \text{III}(\frac{x}{\text{FOV}_x}, \frac{y}{\text{FOV}_y})$$

 $\rightarrow m(x,y)$

remove by deap remove by cropping

Gridding: Design Issues

- Convolution kernel
 - apodization; aliasing
- Sampling grid density (Cartesian)
 - aliasing
- Sampling pattern (non-Cartesian)
 - impulse response and side lobes
 - density characterization / compensation

- Ideal convolution kernel: SINC
 - don't need de-apodization
 - infinite extent impractical to implement
 - windowed version has limited performance
- Desired kernel characteristics
 - compact support (finite width) in k-space
 - minimal aliasing effects in image (sharp transition)

Combine with grid oversampling

$$\Delta k_x = \frac{1}{\text{FOV}_x}, \Delta k_y = \frac{1}{\text{FOV}_y}$$

$$\frac{\Delta k_x}{\alpha} = \frac{1}{\alpha \text{FOV}_x}, \frac{\Delta k_y}{\alpha} = \frac{1}{\alpha \text{FOV}_y} \qquad \alpha > 1$$

$$\hat{M}(k_x, k_y) = \left[(M(k_x, k_y) \cdot S(k_x, k_y)) * C(k_x, k_y) \right] \cdot \text{III}\left(\frac{k_x}{\Delta k_x / \alpha}, \frac{k_y}{\Delta k_y / \alpha}\right)$$

$$\hat{m}(x,y) = \left[(m(x,y) * s(x,y)) \cdot c(x,y) \right] * \text{III}(\frac{x}{\alpha \text{FOV}_x}, \frac{y}{\alpha \text{FOV}_y})$$

Combine with grid oversampling

 α = 2 very forgiving; many kernels work well; apodization minimal expensive ... especially for 3D gridding

- Jointly consider α and kernel
 - minimize aliasing energy
 - characterize trade-offs
 - numerical designs possible
 - Kaiser-Bessel window works very well, with proper choice of β and $kw^{1,2}$; precompute a lookup table to speedup calculations²

$$C_{KB}(k_x) = I_0 \left(\beta \sqrt{1 - \left(\frac{k_x}{kw/2}\right)^2} \right)$$

¹Jackson et al., IEEE TMI 1991; 10: 473-478

²Beatty et al., IEEE TMI 2005; 24: 799-808

Gridding: Design - Density

Sampling density of $S(k_x, k_y)$ not uniform: $\rho(k_x, k_y)$

Pre-compensation of sampling density:

$$\hat{M}(k_x, k_y) = \left[(M(k_x, k_y) \cdot \frac{S(k_x, k_y)}{\rho(k_x, k_y)}) * C(k_x, k_y) \right] \cdot \text{III}$$

density corrected on a data point basis before convolution need to know $ho(k_x,k_y)$

from geometrical analysis, numerical analysis (Voronoi), etc.

inverse of ρ known as the density compensation function (DCF)

Gridding: Design - Density

Post-compensation of sampling density:

$$\hat{M}(k_x, k_y) = \frac{\left[(M(k_x, k_y) \cdot S(k_x, k_y)) * C(k_x, k_y) \right] \cdot \text{III}}{\rho(k_x, k_y)}$$

density corrected on a grid point basis after convolution can estimate ρ along with gridding; grid all 1s:

$$\hat{\rho}(k_x, k_y) = [S(k_x, k_y) * C(k_x, k_y)] \cdot \text{III}$$

may be okay if S changes slowly

... but only an approximation and fails when S changes rapidly

Radial trajectory [256x256] with ramp DCF

Kaiser-Bessel convolution kernel with linear lookup table¹

 α = 2; grid size = 2x[256 256]; kw = 4;

Gridded data on [512x512] grid

Inverse 2D FFT produces image with 2x FOV

Deapodization function is FT of KB convolution kernel

Deapodized image

FOV cropped to extract desired [256x256] image

$$\alpha = 2$$
, kw = 4

FOV cropped to extract desired [256x256] image

$$\alpha = 1.375$$
, kw = 5^1

Gridding: Summary

- Data input
 - k-space data
 - k-space traj (usually normalized), DCF
- Gridding params
 - target image dimensions [MxN]
 - grid oversampling factor α
 - kernel type and width
- Data output
 - gridded Cartesian k-space
 - reconstructed image

- Non-Cartesian recon requires
 - k-space trajectory
 - density compensation function
- Both depend on actual gradient waveforms on scanner
 - can deviate from desired
- Knowledge of k-space trajectory also important for RF design

- Gradient imperfections cause artifacts
 - FOV scaling, shifting
 - signal loss, shading
 - image blurring, geometric distortion
- Sources of gradient errors
 - eddy currents (B₀, linear)
 - group delays (RF filters, A/D)
 - amplifier limitations (BW, freq response)
 - gradient warping
 - other ...

- General techniques
 - off-iso slice technique^{1,2}, and more
- Trajectory-specific techniques
 - radial³, spiral⁴, and more
- Characterize gradient system
 - assume linear time-invariant model⁵

Off-isocenter slice measurement technique

Can repeat on all three axes G_x , G_y , G_z

Off-isocenter slice measurement technique

Waveform ON:

$$s_{x1,Gon}(t) = \iint_{Y,Z} m(x_1, y, z) e^{-i\phi_0(x_1, y, z, t)} \cdot e^{-i2\pi \cdot \left[\frac{\gamma}{2\pi} \int_0^t G(\tau) d\tau\right] \cdot x_1} dy dz$$

Waveform OFF:

$$s_{x1,Goff}(t) = \iint_{Y,Z} m(x_1, y, z) e^{-i\phi_0(x_1, y, z, t)} dy dz$$

Phase difference:

$$\Delta \phi_{x1}(t) = \gamma \int_0^t G(\tau) \cdot x_1 \, d\tau = x_1 \cdot k(t)$$

- Gradient (trajectory) correction
 - use actual trajectory for recon
 - pre-tune bulk gradient delay

Example: Axial Spiral at 1.5 T

- Off-iso slice measurement technique
 - two measurements per axis
 - can measure X on X, Y on Y, Z on Z, and also cross terms; linearly combine
 - Δx should be small (may need avging)
 - need to account for phase wrapping
 - use spin echo for long waveforms
 - can acquire multiple slice offsets and gradient polarities to model individual gradient error terms

- Delay calibration
 - gradient errors (e.g., linear eddy currents)
 mainly cause an apparent bulk delay
 - adjust ADC window w.r.t. gradients
 - delays may be different for each axis

• Off resonance effects (ΔB_0 , fat, etc.)

$$s(t) = \iint_{X,Y} m(x,y) \cdot e^{-i\phi(x,y,t)} \cdot e^{-i2\pi \cdot [k_x(t)x + k_y(t)y]} dx dy$$
$$\phi(x,y,t) = 2\pi \psi(x,y)t$$

- patient (scan) dependent
- pre-scan shim calibration helps
- usually negligible for Cartesian MRI
- non-Cartesian MRI: signal loss, spatial blurring, geometric distortion

Effects of off-res for concentric rings: PSF blurring

- Account for field inhomogeneity
 - use shorter readouts
 - measure/estimate field map

$$s(\text{TE}_1) \longrightarrow I_1 = M'(x,y) \cdot e^{-i2\pi\psi(x,y)\text{TE}_1}$$
$$s(\text{TE}_2) \longrightarrow I_2 = M'(x,y) \cdot e^{-i2\pi\psi(x,y)\text{TE}_2}$$
$$\hat{\psi}(x,y) = \arg(I_1 \cdot I_2^*)/2\pi(\Delta \text{TE}) \quad [\pm 1/2\pi\Delta \text{TE}]$$

and then correct (during recon)^{1,2,3} time-segmented, freq-segmented, etc.

1 Noll DC et al., IEEE TMI 1991; 10: 629-637

Linear Correction

$$\psi(x,y) = f_0 + f_x x + f_y y$$
 (can fit to this model)

$$\phi(x,y) = 2\pi f_0 t + 2\pi \Delta k_x(t) x + 2\pi \Delta k_y(t) y$$

$$\Delta k_x(t) = f_x t, \quad \Delta k_y(t) = f_y t$$

$$s(t) = e^{-i2\pi f_0 t} \iint_{X,Y} m(x,y) \cdot e^{-i2\pi \cdot \left[(k_x(t) + \Delta k_x(t)) \, x + (k_y(t) + \Delta k_y(t)) \, y \right]} \, \mathrm{d}x \, \mathrm{d}y$$

$$\text{shift k-space trajectory}$$

Can follow with frequency-segmented off-res correction

Frequency-segmented correction

Example: Axial Concentric Rings at 1.5 T

- Field map measurement
- Segmented correction methods
 - Need to recon multiple images, $N_{\text{bins}} \sim 4(f_{\text{max}} - f_{\text{min}})T_{\text{acq}}$
- Other sources of off resonance
 - concomitant gradients
 - chemical shift (e.g., fat)
- Other ORC algorithms
 - autofocusing (field map optional)
 - combine with image reconstruction

Thanks!

- Further reading
 - references on each slide
 - further reading section on website
- Acknowledgments
 - John Pauly's EE369C class notes (Stanford)

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab