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Class Business

• Homework 1 solutions


• Homework 2 due 5/5 Fri 


• Final project

- Proposal due 5/8 Mon 

   can send us a draft to get feedback

- Abstract due 6/8 Thu 

- Presentations on 6/13 Tue 


• Office hours 



Outline

• Spiral Trajectory


• Non-Cartesian 3D Trajectories

- 3D stack of radial

- 3D radial

- 3D cones


• Non-Cartesian Image Reconstruction

- Gridding reconstruction

- Gradient measurement

- Off-resonance correction



Spirals
ky

kx

“THE” non-Cartesian trajectory


Highly robust to motion/flow effects


Very fast!


  - optimal use of gradients in 2D


  - can acquire one image in ~100 ms



Spirals: Sampling Requirements
N interleaves

2 kr,max = 1 / dx

dk = 1 / FOV

Design 1 interleaf 

and rotate

Subject to HW limits



Spirals: Gradient Design
k-space trajectory

Gradients vs. time Slew rate vs. time

k-space pos vs. time



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm



Spirals: Image Reconstruction
ky

kx

Gridding Algorithm

Follow with 2D Fourier Transform ...



Spirals: Gradient Delays

2 sample delay 1 sample delay calibrated



Spirals: Off-Resonance Effects

Nintlv = 8


Trd = 26.67 ms

Nintlv = 16


Trd = 13.41 ms

Nintlv = 48


Trd = 4.61 ms 



Spirals: Practical Considerations

ky

kx

Trajectory design


Gradient waveform calibration


k-Space density compensation


Off-resonance correction


Fat suppression


Gridding reconstruction

applies to non-Cartesian MRI in general



Spirals: Pros and Cons
ky

kx

Pros


  - Very fast (up to single shot)


  - Very short TE


  - Robust to motion/flow effects


Cons


  - May have mixed contrast


  - Sensitive to gradient delays


  - Sensitive to off-resonance effects



Spirals: Real-Time Cardiac MRI

- Healthy subject; 1.5 T; 8-ch array

- Golden-angle ordering

- Spiral 2D GRE; 8-mm slice

- Spatial resolution = 1.6 mm

- SPIRiT recon with R = 2

- 40 cm, 1.6 mm 

- 250x250 matrix @ 6 fps

- 12-fold reduction in #TRs (vs. 2DFT)

- 8-TR sliding window display (16 fps)


Wu HH et al., ISMRM 2013, p3828 



Spirals: 3D LGE MRI

courtesy of Joelle Barral & Juan Santos (HeartVista)

3D Spiral IR-GRE

- 6-interleaf VD spiral

- 7.5-ms readout

- 90 x 90 x 11 matrix

- outer volume suppr

- water-only RF exc

- TR = 15.48 ms

- 8-HB BH scan


Reconstruction

- SPIRiT (R = 2)

- ~5-sec recon

1.5 T



3D Non-Cartesian Sampling

3D Cones

kz

kx

ky

kz

kx

ky

3D Stack of Rings

and much more ...

kz

kx

ky

3D Stack of Stars



3D Stack-of-Radial
kz

kx

ky

Pros

  - Straightforward extension of radial

  - Robust to motion

  - Can tolerate a lot of undersampling

Cons

  - May have mixed contrast

  - Sensitive to gradient delays

  - Sensitive to off-resonance effects


aka Stack-of-Stars



3D Stack-of-Radial: Liver MRI

courtesy of Tess Armstrong

Axial

Coronal

Sagittal

Free-breathing 3D Stack-of-Radial MRI3D Cartesian MRI

Insufficient breath-holding



3D Radial
kz

kx

ky

image from http://en.wikipedia.org/wiki/Koosh_ball

Pros

  - Robust to motion (get DC every TR)

  - Can tolerate a lot of undersampling

  - Half-spoke PR has very short TE

Cons

  - May have mixed contrast

  - Sensitive to gradient delays

  - Sensitive to off-resonance effects


http://en.wikipedia.org/wiki/Koosh_ball


3D Radial: Coronary MRA
Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence

(1.0 mm)3 spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

courtesy of Debiao Li and J Pang (Cedars-Sinai)



3D Cones
kz

kx

ky

Pros

  - Very fast (3-8x vs. Cartesian)

  - Very short TE

  - Flexible readout length 

  - Robust to motion/flow effects

Cons

  - May have mixed contrast

  - Sensitive to gradient delays

  - Sensitive to off-resonance effects

Gurney PT et al., MRM 2006; 55: 575-82



Wu HH et al., MRM 2013; 69: 1083-1093

3D Cones: Coronary MRA
Multi-Phase Thin-Slab MIP Reformats



3D Cones: Hi-res CMRA
Thin-Slab MIP Reformats: 0.8 mm isotropic

Subject	A Subject	B Subject	C

1.2	mm 0.8	mm
Right	coronary	
artery	cross	
section

1.5 T; 8-channel cardiac coil

Addy NO, et al., MRM 2015; 74:614-621



Non-Cartesian Image Reconstruction

• Gridding reconstruction


• Gradient measurement


• Off-resonance correction



MRI Signal Equation

kx(t) =
�

2⇡

Z t

0
Gx(⌧) d⌧, ky(t) =

�

2⇡

Z t

0
Gy(⌧) d⌧

General definition of k-space:

s(t) =

ZZ

X,Y

m(x, y) · exp(�i2⇡ · [kx(t)x+ ky(t) y]) dx dy

= FT (m(x, y) ) = M( kx(t), ky(t) )



m(x, y) =

ZZ

kx,ky

M(kx, ky) · exp(i2⇡ · [kxx+ kyy]) dkx dky

m(x, y) = FT �1(M(kx, ky) )

MRI Reconstruction

simple for Cartesian (kx, ky) to Cartesian (x, y): 2D FFT

time consuming for non-Cartesian (kx, ky) to Cartesian (x, y)

k-space image space

uniform

non-uniform

uniform

non-uniform



Non-Cartesian Reconstruction
• Inverse Fourier transform


- aka conjugate phase reconstruction


• Gridding (+FFT)1

- grid driven interpolation

- data driven interpolation (more popular)

- forward and reverse (inverse)


• Non-uniform FFT (NUFFT)2


• Block Uniform ReSampling (BURS)3

2 Fessler JA et al., IEEE TSP 2003; 51: 560-574
3 Rosenfeld D, MRM 2002; 48: 193-202

1 O’Sullivan JD, IEEE TMI 1985; 4: 200-207



Gridding: Basic Idea

convolve each acquired data point with kernel C(kx, ky)

k-space
C(kx, ky)

resample the convolution onto Cartesian grid points
2D inverse FFT;  de-apodization and FOV cropping



Gridding: Basic Math
S(kx, ky) =

X

j

2�(kx � kx,j , ky � ky,j)

M̂(kx, ky) = [(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III(
kx
�kx

,
ky
�ky

)

non-Cartesian dataset interpolation resample to grid

Sampling pattern:

C(kx, ky)Convolution kernel:

Gridding recon:

m̂(x, y) = [(m(x, y) ⇤ s(x, y)) · c(x, y)] ⇤ III( x

FOVx
,

y

FOVy
)

remove by croppingremove by deap! m(x, y)

III(
kx
�kx

,
ky
�ky

)Grid:

FFT



Gridding: Design Issues

• Convolution kernel

- apodization; aliasing


• Sampling grid density (Cartesian)

- aliasing


• Sampling pattern (non-Cartesian)

- impulse response and side lobes

- density characterization / compensation



Gridding: Design - Kernel

• Ideal convolution kernel: SINC

- don’t need de-apodization

- infinite extent impractical to implement

- windowed version has limited performance


• Desired kernel characteristics

- compact support (finite width) in k-space

- minimal aliasing effects in image (sharp 

transition)



Gridding: Design - Kernel

�kx =
1

FOVx
,�ky =

1

FOVy

Combine with grid oversampling

�kx
↵

=
1

↵FOVx
,
�ky
↵

=
1

↵FOVy
↵ > 1

M̂(kx, ky) = [(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III(
kx

�kx/↵
,

ky
�ky/↵

)

m̂(x, y) = [(m(x, y) ⇤ s(x, y)) · c(x, y)] ⇤ III( x

↵FOVx
,

y

↵FOVy
)



Gridding: Design - Kernel
Combine with grid oversampling

object ……

α = 2 very forgiving; many kernels work well; apodization minimal
expensive … especially for 3D gridding

c(x,y)

object replica

αFOV

c(x,y)
……

replica

FOV
aliasing

replicas from resampling to gridFOV
cause additional aliasing



Gridding: Design - Kernel

• Jointly consider α and kernel

- minimize aliasing energy

- characterize trade-offs

- numerical designs possible

- Kaiser-Bessel window works very well, with 

proper choice of β and kw1,2; precompute a 
lookup table to speedup calculations2

2Beatty et al., IEEE TMI 2005; 24: 799-808

1Jackson et al., IEEE TMI 1991; 10: 473-478

CKB(kx) = I0

 
�

s

1� (
kx

kw/2
)2

!



Gridding: Design - Density
Sampling density of S(kx, ky) not uniform: ⇢(kx, ky)

M̂(kx, ky) = [(M(kx, ky) ·
S(kx, ky)

⇢(kx, ky)
) ⇤ C(kx, ky)] · III

Pre-compensation of sampling density:

density corrected on a data point basis before convolution
need to know ⇢(kx, ky)

from geometrical analysis, numerical analysis (Voronoi), etc.

inverse of ρ known as the density compensation function (DCF)



M̂(kx, ky) =
[(M(kx, ky) · S(kx, ky)) ⇤ C(kx, ky)] · III

⇢(kx, ky)

Gridding: Design - Density
Post-compensation of sampling density:

density corrected on a grid point basis after convolution
can estimate ρ along with gridding; grid all 1s:

… but only an approximation and fails when S changes rapidly

⇢̂(kx, ky) = [S(kx, ky) ⇤ C(kx, ky)] · III

may be okay if S changes slowly



Gridding: 2D Radial Example
Radial trajectory [256x256] with ramp DCF



Gridding: 2D Radial Example

α = 2; grid size = 2x[256 256]; kw = 4; 

Kaiser-Bessel convolution kernel with linear lookup table1

1Beatty et al., IEEE TMI 2005; 24: 799-808

showing 1D & one side



Gridding: 2D Radial Example
Gridded data on [512x512] grid



Gridding: 2D Radial Example
Inverse 2D FFT produces image with 2x FOV



Gridding: 2D Radial Example
Deapodization function is FT of KB convolution kernel



Gridding: 2D Radial Example
Deapodized image



Gridding: 2D Radial Example
FOV cropped to extract desired [256x256] image

α = 2, kw = 4



Gridding: 2D Radial Example
FOV cropped to extract desired [256x256] image

α = 1.375, kw = 51

1Beatty et al., IEEE TMI 2005; 24: 799-808



Gridding: Summary

• Data input

- k-space data

- k-space traj (usually normalized), DCF


• Gridding params

- target image dimensions [MxN]

- grid oversampling factor α

- kernel type and width


• Data output

- gridded Cartesian k-space

- reconstructed image



Gradient Measurement

• Non-Cartesian recon requires

- k-space trajectory

- density compensation function


• Both depend on actual gradient 
waveforms on scanner

- can deviate from desired


• Knowledge of k-space trajectory also 
important for RF design



Gradient Measurement

• Gradient imperfections cause artifacts

- FOV scaling, shifting

- signal loss, shading

- image blurring, geometric distortion


• Sources of gradient errors

- eddy currents (B0, linear)

- group delays (RF filters, A/D)

- amplifier limitations (BW, freq response)

- gradient warping

- other ...



Gradient Measurement 

• General techniques

- off-iso slice technique1,2, and more


• Trajectory-specific techniques

- radial3, spiral4, and more


• Characterize gradient system

- assume linear time-invariant model5

5 Addy NO et al., MRM 2012; 68: 120-129
4 Robison RK et al., MRM 2010; 63: 1683-90

3 Peters DC et al., MRM 2003; 50: 1-6

2 Beaumont M et al., MRM 2007; 58: 200-205

1 Duyn JH et al., JMR 1998; 132: 150-153



Gradient Measurement
Off-isocenter slice measurement technique

Duyn JH et al., JMR 1998; 132: 150-153

test waveform

signal

G

RF

ADC

x1

Can repeat on all three axes Gx, Gy, Gz

Δx



Gradient Measurement
Off-isocenter slice measurement technique

Duyn JH et al., JMR 1998; 132: 150-153

Waveform ON:

Phase difference:

��x1(t) = �

Z t

0
G(⌧) · x1 d⌧ = x1 · k(t)

sx1,Gon(t) =

ZZ

Y,Z

m(x1, y, z)e
�i�0(x1,y,z,t) · e�i2⇡·[ �

2⇡

R t
0 G(⌧)d⌧ ]·x1 dy dz

Waveform OFF:

sx1,Goff (t) =

ZZ

Y,Z

m(x1, y, z)e
�i�0(x1,y,z,t) dy dz



Gradient Measurement 



Gradient Measurement
• Gradient (trajectory) correction 

- use actual trajectory for recon

- pre-tune bulk gradient delay

Calculated TrajectoryNominal Trajectory Difference (x8)

Example: Axial Spiral at 1.5 T

Addy NO et al., MRM 2012; 68: 120-129



Gradient Measurement

• Off-iso slice measurement technique

- two measurements per axis

- can measure X on X, Y on Y, Z on Z, and 

also cross terms; linearly combine

- Δx should be small (may need avging)

- need to account for phase wrapping

- use spin echo for long waveforms

- can acquire multiple slice offsets and 

gradient polarities to model individual 
gradient error terms



Gradient Measurement

• Delay calibration

- gradient errors (e.g., linear eddy currents) 

mainly cause an apparent bulk delay

- adjust ADC window w.r.t. gradients

- delays may be different for each axis



s(t) =

ZZ

X,Y

m(x, y) · e�i�(x,y,t) · e�i2⇡·[kx(t) x+ky(t) y] dx dy

Off-resonance Correction 
• Off resonance effects (ΔB0, fat, etc.) 


- patient (scan) dependent

- pre-scan shim calibration helps

- usually negligible for Cartesian MRI

- non-Cartesian MRI: signal loss, 

spatial blurring, geometric distortion

�(x, y, t) = 2⇡ (x, y)t



Off-resonance Correction 
Effects of off-res for concentric rings: PSF blurring



• Account for field inhomogeneity

- use shorter readouts

- measure/estimate field map 

 
 
 
 
 
and then correct (during recon)1,2,3 

time-segmented, freq-segmented, etc.

Off-resonance Correction 

1 Noll DC et al., IEEE TMI 1991; 10: 629-637

3 Chen JY et al., MRM 2011; 66: 390-401

s(TE1) �! I1 = M 0(x, y) · e�i2⇡ (x,y)TE1

s(TE2) �! I2 = M 0(x, y) · e�i2⇡ (x,y)TE2

 ̂(x, y) = arg(I1 · I⇤2 )/2⇡(�TE) [±1/2⇡�TE ]

2 Noll DC et al., MRM 1992; 25: 319-333



Off-resonance Correction 
Linear Correction

 (x, y) = f0 + fxx+ fyy (can fit to this model)

�(x, y) = 2⇡f0t+ 2⇡�kx(t)x+ 2⇡�ky(t)y

�kx(t) = fxt, �ky(t) = fyt

s(t) = e�i2⇡f0t

ZZ

X,Y

m(x, y) · e�i2⇡·[(kx(t)+�kx(t)) x+(ky(t)+�ky(t)) y] dx dy

demod shift k-space trajectory

Irarrazabal P et al., MRM 1996; 35: 278-282

Can follow with frequency-segmented off-res correction



Off-resonance Correction 
Frequency-segmented correction

Bernstein et al., Handbook of MRI Sequences, Fig. 17.63



Off-resonance Correction 

Regular Recon Field Map ORC Image

Example: Axial Concentric Rings at 1.5 T

Wu HH et al., MRM 2008; 59: 102-112



Off-resonance Correction
• Field map measurement


• Segmented correction methods

- Need to recon multiple images, 

Nbins ~ 4(fmax - fmin)Tacq


• Other sources of off resonance

- concomitant gradients

- chemical shift (e.g., fat)


• Other ORC algorithms

- autofocusing (field map optional)

- combine with image reconstruction



Thanks!

• Further reading

- references on each slide

- further reading section on website


• Acknowledgments

- John Pauly’s EE369C class notes (Stanford)

Holden H. Wu, Ph.D.


HoldenWu@mednet.ucla.edu


http://mrrl.ucla.edu/wulab
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