Susceptibility MRI

Jingwen Yao M229 Advanced Topics in MRI May 30, 2024

Outline

Phase in MRI

Susceptibility MRI Contrast

Susceptibility MRI Processing

Susceptibility-weighted imaging (SWI)

Quantitative susceptibility mapping (QSM)

Susceptibility MRI Applications

Phase in MRI

Phase in MRI

Phase in MRI

Phase MRI

	Encoding	Data	Applications
Susceptibility imaging	None	Raw phase	Iron, calcium, myelin imaging
Conductivity imaging	None / External current	Raw phase (B ₁)	Tumors, ischemic lesions
MR thermometry	None	Phase shift	MR-guided procedures
Flow imaging	Velocity-encoding bipolar gradient	Subtracted phase data from opposite encodings	Cardiac flow, CSF flow
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Subtracted phase data from opposite encodings and combined across three directions	Angiogram, venogram, aneurysm
Elastography	Motion-encoding gradients	Phase differences	Liver fibrosis, brain

Phase MRI

	Encoding	Data
Susceptibility imaging	None	Raw phase
Conductivity imaging	None / External current	Raw phase (B ₁)
MR thermometry	None	Phase shift
Flow imaging	Velocity-encoding bipolar gradient	Subtracted phase data from opposite encodings
Phase contrast angiography	Bipolar gradients applied along the x, y, and z axes sequentially	Subtracted phase data from opposite encodings and across three directions
Elastography	Motion-encoding gradients	Phase differences

Phase MRI

	Encoding	Data	Applications
Susceptibility imaging	None	Raw phase	Iron, calcium, myelin imaging
Conductivity imaging	None / External current	NY SELEC	S 45 0
MR thermometry	None	ANTAC.	50 V (S)
Flow imaging	Velocity-encoding bipolar gradient		
Phase contrast angiography	Bipolar gradients applied along the and z axes sequen		
Elastography	Motion-encoding gradients	Constant of the second	

Which of the statements about H and B are correct?

Join at menti.com | use code 8640 8675

mriquestions.com

	O N N N His N CH ₂ Oxyhemoglobin (O ₂)	N N N His N CH ₂ Deoxyhemoglobin (empty)	H H H H H H H H H H H H H H
# Unpaired electrons	0	4	5
Magnetic susceptibility	Diamagnetic $\chi < 0$	Paramagnetic $\chi > 0$	Paramagnetic $\chi > 0$

www.rcsb.org

Susceptibility MRI – Deoxyhemoglobin

Iron Perl's Stain

GRE Magnitude Image

GRE Phase Image

Drayer Am J Roentgenol 1986

Susceptibility MRI – Calcification

Tissue validation

Ferumoxytol phantom

Where does the phase discontinuity come from?

Join at menti.com | use code 8640 8675

Susceptibility MRI – Signal model T₂*-weighted sequence Quantitative Susceptibility-weighted imaging T₂*-weighted susceptibility mapping Phase magnitude

SWI – Processing

SWI – Processing

SWI – Example applications

phase-weighted magnitude imaging

SWI – Example applications

phase-weighted magnitude imaging

SWI – Example applications

Susceptibility MRI – source of contrast T₂*-weighted sequence Quantitative Susceptibility-T₂*-weighted susceptibility mapping Phase weighted imaging magnitude

$$\Delta B_{\rm int}(\overrightarrow{r}) = B_0 \cdot \int_{-\infty}^{\infty} \widetilde{\chi}(\overrightarrow{r'}) \cdot d_z(\overrightarrow{r} - \overrightarrow{r'}) d^3 \overrightarrow{r'}$$

Review: Deistung et al. NMR Biomed 2017; Schweser et al. Z Med Phys 2016

Join at menti.com | use code 8640 8675

$$d(\vec{r}) = \frac{1}{4\pi} \frac{3\cos^2(\theta) - 1}{|\vec{r}|^3}$$

What is the FT of convolution?

$$\Delta B(\vec{k}) = B_0[\chi(\vec{k})d(\vec{k})]$$

$$d\left(\vec{k}\right) = \frac{1}{3} - \frac{k_z^2}{\left|\vec{k}\right|^2}$$

Susceptibility MRI – Processing

QSM - Processing

1. Coil combination

T₂*-weighted sequence

QSM - Processing

2. Phase unwrapping

Special issue review article

Received: 11 November 2015,

Revised: 14 June 2016,

Accepted: 18 July 2016,

Published online in Wiley Online Library: 13 September 2016

(wileyonlinelibrary.com) DOI: 10.1002/nbm.3601

An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping

Simon Daniel Robinson^a*, Kristian Bredies^b, Diana Khabipova^{c,d}, Barbara Dymerska^a, José P. Marques^{c,d} and Ferdinand Schweser^{e,f}

Coil phase

Magnitude

Phase

Single Channel Single Channel Unwrapped Phase

Single Channel QSM

Coil phase

Magnitude

Single Channel Multi Channel Phase Phase

Unwrapped Phase

QSM

Measured phase (single coil)

 $\phi(\vec{r}, TE) = \phi_0(\vec{r}) + \phi_{total}(\vec{r}, TE)$

Transceiver phase

spatially varying phase offsets exist between receive coils

Robinson S et al., NMR Biomed, 2015

QSM - Phase unwrapping

5.84 ms

40.56 ms

QSM - Phase unwrapping

QSM - Background field removal

Journal of Magnetic Resonance **148**, 442–448 (2001) doi:10.1006/jmre.2000.2267, available online at http://www.idealibrary.com on **IDE**

High-Precision Mapping of the Magnetic Field Utilizing the Harmonic Function Mean Value Property

Lin Li and John S. Leigh

Department of Biochemistry and Molecular Biophysics, and Metabolic Magnetic Resonance Research & Computing Center, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received June 15, 2000; revised November 20, 2000

The spatial distributions of the static magnetic field components and MR phase maps in space with homogeneous magnetic susceptibility are shown to be harmonic functions satisfying Laplace's equation. A mean value property is derived and experimentally confirmed on phase maps: the mean value on a spherical surface in space is equal to the value at the center of the sphere. Based on this property, a method is implemented for significantly improving the precision of MR phase or field mapping. Three-dimensional mappings of the static magnetic field with a precision of $10^{-11} \sim$ 10^{-12} T are obtained in phantoms by a 1.5-T clinical MR scanner, with about three-orders-of-magnitude precision improvement over the conventional phase mapping technique. *In vivo* application of the method is also demonstrated on human leg phase maps. $\circ 2001$

Key Words: field mapping; harmonic function; mean value property; phase; SMV.

aging, we generate field maps with high precision up to $10^{-11} \sim 10^{-12}$ T. Such a measurement precision is comparable with that of a superconducting quantum interference device (SQUID) for the magnetic field measurement (17). Feasibility with *in vivo* applications is also demonstrated.

THEORY

In free space or regions without susceptibility heterogeneity and no macroscopic currents, all the components of the static magnetic field **H** satisfy Laplace's equation, i.e., $\nabla^2 \mathbf{H}_i = 0$, i = x, y, z, or $\nabla^2 \mathbf{H} = 0$, which can be easily derived by setting the temporal derivative of the magnetic field in the electromagnetic wave equation (18) to zero. Therefore, local magnetic induction (4, 19) experienced by a nucleus, (1 + $\chi/3)$ *H*, also satisfies Laplace's equation. Since the spatial

RESHARP

HARPERELLA

PDF

Dipole inversion

Local field

QSM

ill-posed inversion problem Noise amplification near the zero cone surfaces

COSMOS: calculation of susceptibility using multiple orientation sampling

COSMOS: calculation of susceptibility using multiple orientation sampling

COSMOS: calculation of susceptibility using multiple orientation sampling

QSM Dipole Inversion: iLSQR

iLSQR: iterative method solving least square using the orthogonal and right triangular decomposition

Dipole kernel

$$\psi(\mathbf{k}) = D_2(\mathbf{k}) \cdot \chi(\mathbf{k})$$

Field perturbation

Susceptibility distribution

1st order derivative

$$\psi'(\mathbf{k}) + \left[2\left(k_x^2 + k_y^2\right)k_z/k^4\right]\cdot\chi(\mathbf{k}) - D_2(\mathbf{k})\cdot\chi'(\mathbf{k}) = 0$$

 $D_3(\mathbf{k})\cdot\chi(\mathbf{k})+D_2(\mathbf{k})\cdot FT[i\cdot r_z\chi(\mathbf{r})]=FT[i\cdot r_z\psi(\mathbf{r})]$

$$egin{aligned} \chiig(\mathbf{k}ig) &= D_2(\mathbf{k})^{-1}\cdot\psiig(\mathbf{k}ig), \ \ ext{when} \ \ D_2(\mathbf{k}) &\geq arepsilon \ \chiig(\mathbf{k}ig) &pprox D_3(\mathbf{k})^{-1}\cdot FT[ir_z\psi(\mathbf{r})], \ \ ext{when} \ \ D_2(\mathbf{k})$$

Where: $D_3(\mathbf{k}) = (k_x^2 + k_y^2)k_z/\pi k^4$

QSM Dipole Inversion: iterative inversion methods with regularization

Recon problem
$$\arg \min_{\chi} \frac{1}{2} \| W(F^H DF\chi - \Phi) \|_2^2 + \alpha \Omega(\chi)$$
Data consistency termRegularization
termNonlinear variant $\arg \min_{\chi} \frac{1}{2} \| W(e^{iF^H DF\chi} - e^{i\Phi}) \|_2^2 + \alpha \Omega(\chi)$

Method	Data consistency term	Regularization term
STAR-QSM (STreaking Artifact Reduction for QSM)	Linear L2-norm	Total variation
FANSI (FAst Nonlinear Susceptibility Inversion)	Nonlinear L2-norm	Total variation
HD-QSM (Hybrid Data fidelity)	Linear L1+L2-norm	Total variation
MEDI (Morphology Enabled Dipole Inversion)	Linear L1-norm	L1 norm of morphologically weighted gradients

QSM Dipole Inversion: single step methods

QSIP

Quantifying Susceptibility by Inversion of a Perturbation model

$$\chi_{1}^{*} = \arg \min_{\chi_{1}} \left[\lambda_{1} | W \circ (\Delta B - \Delta (K_{s} * \chi_{1})) |_{1} + \lambda_{2} | M \circ (B - (K_{s} * \chi_{1} + B_{e})) |_{2}^{2} + \lambda_{3} | M^{C} \circ (\chi_{1} + \chi_{0}/\delta) |_{2}^{2} \right]$$

Simultaneously estimating the external susceptibility outside the brain

SSTV, SSTGV

Single Step QSM with Total Variation / Total Generalized Variation penalties

$$\min_{\chi} \frac{1}{2} \sum_{i} \left| \left| M_{i} F^{-1} H_{i} D F \chi - M_{i} F^{-1} H_{i} F \Psi(\phi) \right| \right|_{2}^{2} + R(\chi)$$

Perform VSHARP background field removal and dipole inversion in a single step

QSM Dipole Inversion: deep learning-based methods

Chen Y, NeuroImage, 2020; Yoon J, NeuroImage, 2018; Jung W, NeuroImage, 2020 Gao Y, NMR in Biomed, 2020 Gao Y, NeuroImage, 2022

QSM - Processing

1. Coil combination

T₂*-weighted sequence

SWI – Brain tumors

Iron

Blood product

Vascular abnormalities

Iron deposition

Calcium

Infection Tumor

- Hemorrhage within tumors
- Pathologic vessels, angiogenesis

QSM applications - Aging

QSM applications – Neurodegenerative diseases

Parkinson's Disease

Huntington's Disease

QSM applications – Functional neurosurgery

QSM applications – Functional neurosurgery

QSM applications – Functional neurosurgery

QSM: Susceptibility source decomposition

Chen J et al., NeuroImage, 2023

QSM: Susceptibility source decomposition

Α

В

Thank you !

Join at menti.com | use code 8640 8675

