Imaging Techniques and Artifacts

Kyung Sung, Ph.D.

Assistant Professor of Radiology Magnetic Resonance Research Labs

Review of Gradient Echo

- Advantages
 - Fast Imaging Applications
 - Flexible contrast (T_1 or T_2^*)
- Disadvantages
 - Off-resonance sensitivity
 - T₂*-weighted rather than T₂-weighted

Principal GRE Advantages

- Fast Imaging Applications
 - Why? Can use a shorter TE/TR than spin echo
 - When? Breath-held, realtime, & 3D volume imaging
- Flexible image contrast
 - Why? Adjusting TE/TR/FA controls the signal
 - When? Characterize a tissue for diagnosis
- Bright blood signal
 - Why? Inflowing spins haven't "seen" numerous RF pulses
 - When? Cardiovascular & angiographic applications

Principal GRE Advantages

- Low SAR
 - Why? Imaging flip angles are (typically) small
 - When? When heating risks are a concern
- Quantitative
 - Why? Multi-echo acquisition are practical.
 - When? Flow quantification & Fat/Water mapping
- Susceptibility Weighted Imaging
 - Why? No refocusing pulse.
 - When? T₂*-weighted (hemorrhage) imaging
- More...

Principal GRE Disadvantages

- Off-resonance sensitivity
 - Why? No refocusing pulse
 - Field inhomogeneity, Susceptibility, & Chemical shift
- T₂*-weighted rather than T₂-weighted
 - Why? No re-focusing pulse
 - Spin-spin dephasing is not reversible with GRE
- Larger metal artifacts than SE
 - Why? No refocusing pulse.
 - Large field inhomogeneities aren't corrected with GRE

Gradient vs Spin Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	<5ms	>100ms	<10°
T₁-Weighted	<5ms	<50ms	>30°
T ₂ *-Weighted	>20ms	>100ms	<10°

Spin Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	10-30ms	>2000ms	90+180
T ₁ -Weighted	10-30ms	450-850ms	90+180
T ₂ -Weighted	>60ms	>2000ms	90+180

Spoiled GRE & Ernst Angle

Principle of In-flow Enhancement

Acquisition *bandwidth* is related to the *speed* with which an echo is acquired. If the *bandwidth* (speed) is high, then there is less time for chemical shift, less time for signal acquisition (lower SNR), and a shorter TE/TR.

GRE and Fat/Water Phase

In-Phase

Opposed-Phase

MRI Acronyms

	Siemens	GE	Phillips	Toshiba	Hitachi
Spoiled Gradient Echo	FLASH	SPGR	T1-FFE	T1-GGE	RSSG
Balanced Steady- State Free Precession	TrueFISP	FIESTA	Balanced FFE	True SSFP	BASG

MRI Acronyms

	Siemens	GE	Phillips	Toshiba	Hitachi
Turbo spin echo/ Fast spin echo	TSE	FSE	TSE	FSE	FSE
Single-shot TSE	HASTE	Single-shot FSE	Single-shot FSE	FASE	Single-shot FSE
3D TSE with variable flip angle	SPACE	CUBE	VISTA	mVox	

Gradient vs. Spin Echo

Which image is a gradient echo image?

Images Courtesy of Brian Hargreaves

Gradient vs. Spin Echo

Images Courtesy of Brian Hargreaves

Gradient Echo Imaging...

Gradient echo imaging is great for everything except:

- A. T₂*-weighted imaging.
- B. T₂-weighted imaging.
- C. True 3D imaging.
- D. Real time imaging.

Gradient Echo Imaging...

Gradient echo imaging is great for everything except:

A. T₂*-weighted imaging

Yes. GRE can be a T_2^* -weighted sequence.

- B. T₂-weighted imaging No. GRE can not be T₂-weighted
- C. True 3D imaging Yes! GRE is a fast sequence
- D. Real time imaging Yes! GRE is a fast sequence

Gradient Echo Imaging...

A. ... is great for T_2 imaging

B. ...works well for imaging near metal implants

C. ... is a fast acquisition technique

D. ...is insensitive to off-resonance effects

Gradient Echo Imaging...

- A. ...is great for T_2 imaging GRE is sensitive to T_2^* , whereas SE is sensitive to T_2
- B. ...works well for imaging near metal implants Metal causes large distortions for which SE is useful

C. ... is a fast acquisition technique

Yes! The TE/TR are typically quite short compared to SE

D. ...is insensitive to off-resonance effects.
GRE is sensitive to B₀ inhomogeneity, chemical shift and susceptibility shifts

Gradient Echoes - True or False?

- 1. GRE sequences have longer TRs than SE sequences.
- 2. GRE is great for fast T1-weighted imaging.
- 3. Metal artifacts on GRE are typically small.
- 4. GRE is great for T2 contrast.

In Gradient Echo Imaging Always...

A. Use the highest available flip angle.

- B. Calculate and use the Ernst angle.
- C. Use a flip angle for maximum contrast.

In Gradient Echo Imaging Always...

A. Use the highest available flip angle.

- **B.** Calculate and use the Ernst angle.
- C. Use a flip angle for maximum contrast.

Gradient Echoes - True or False?

- GRE and SE can both provide T2* contrast.
- 2. GRE and SE use the same TE and TR to produce a T1-weighted image.
- 3. SE is better for visualizing tissues with a very short T2 because of the refocusing pulses.
- 4. In GRE higher flip angles always produce brighter images.

Gradient Echoes - True or False?

- 1. GRE is less sensitive to offresonance than spin echo imaging.
- 2. GRE uses a refocusing pulse to form an echo.
- 3. Gradient and RF spoiling enable faster imaging.

Which image is the in-phase image?

Images Courtesy of Scott Reeder

Which image is the in-phase image?

In-Phase Opposed-Phase Images Courtesy of Scott Reeder

Gradient Echoes - True or False?

- 1. Fat and water precess at frequencies that are >1000Hz different.
- 2. Fat and water are always out of phase.
- 3. Fat and water destructively interfere when they are in phase.
- 4. In-flowing spins are bright because they "see" hundreds of excitation pulses.

Inversion Recovery Spin Echo MRI

MRI Pulse Sequences

Contrast Module

Imaging Module

Saturation Recovery Inversion Recovery T2-preparation (Fast) Spin Echo (Spoiled) Gradient Echo aka "Host Sequence"

What is an inversion

Inversion Recovery

Inversion Recovery + Spin Echo

Inversion Recovery + Spin Echo

Inversion Recovery + Spin Echo

Inversion Recovery + Spin Echo

Short Tau Inversion Recovery (STIR) ™

- T1 (or T2-weighted) with nulled fat
 - Intermediate TR (2,000ms) adds T1-weighting
 - Short TE (60ms) limits T2-weighting
 - Long TI (120 to 170ms) nulls fat
- Applications: edema, fat sat, MSK,....

short T₁

Fat = brightes

GM = intermediate

Sagittal T2-weighted STIR

Images Courtesy of Frank Korosec & radiopaedia.org

STIR vs. T2-weighted Fast Spin **Echo**

(A) Coronal STIR of the knee. High-signal marrow edema is identified in the middle of the tibial plateau and medial femoral condyle. Fraying of the lateral meniscus free edge represents a degenerative radial tear. (B) Coronal T2weighted FSE at the same position. The edema is largely obscured by the high-signal-intensity marrow.

Duke Review of MRI Principles, p. 88.

short T₁

long T₁

Fat = brighte

GM = intermediate

FLuid Attenuated Inversion Recovery (FLAIR)

- T2-weighted image with nulled CSF
 - Long TR (11,000ms) limits T1-weighting
 - Long TE (145ms) emphasizes T2-weighting
 - Long TI (2200ms) nulls CSF
- Applications: stroke, MS, cancer,...

Axial T2-weighted FLAI

nroves conspicuity

FLAIR vs. T2-weighted Fast Spin Echo

T2 Flair (TR = 8000 ms, TE = 127 ms)

Fast Spin Echo

FLAIR attenuates CSF and improves lesion conspicuity. Images Courtesy of Frank Korosec

Spatial Localization

Spatial Encoding

- Three key steps:
 - Slice selection
 - You have to pick slice!
 - Phase Encoding
 - You have to encode 1 of 2 dimensions within the slice.
 - Frequency Encoding (aka readout)
 - You have to encode the other dimension within the slice.

What is *k*-space?

- *k*-space is the raw data collected by the scanner.
 - A point in k-space tells us about the presence/absence of a spatial frequency (pattern) in the acquired image.
 - Each echo measures *many* of the spatial frequencies that comprise the object.
- Gradients move us around in k-space
- A line of *k*-space is filled by an echo

What is k-space?

k-space is the raw data collected by the scanner.

k-space - True or False?

- 1. *k*-space is the raw data collected by the scanner.
- 2. A point in *k*-space represents one pixel's intensity in the image.
- 3. An echo corresponds to a single point in *k*-space.
- 4. The edges of *k*-space relate to image contrast.
- 5. High resolution imaging takes longer because we need to acquire more of *k*-space.

Parallel Imaging

Parallel Imaging

- Applications
 - 2x-3x acceleration used routinely
- Advantages
 - Accelerate image acquisition
 - Shorter breath holds, quicker or more thorough exams.
 - Improve spatial or temporal resolution
 - Without increasing scan time.
- Disadvantages
 - Faster scanning is noisier scanning.
 - Noisier than other acceleration methods.
 - Accelerations >2-3x for 2D imaging are too noisy.
 - Accelerations >3-4x for 3D imaging are too noisy.

<section-header>

4-Channel Cardiac Coil

Coils are combined to form a single image.

Impact of Acceleration

P. Kellman (NIH)

High acceleration rates lead to local noise amplification.

Parallel Imaging - True or False?

- 1. Parallel imaging comes for free (no SNR penalty).
- 2. Parallel imaging can be used with single channel coils.
- Parallel imaging accelerations of 20-30x are typical.

MRI Artifacts

Phase Encode Artifacts

Aliasing Artifact

- Occurs when FOV is too small. Why?
 - Gradients are active across FOV and beyond.
 - Spins outside the specified FOV still see the gradients.
 - These spins are misinterpreted as coming from areas within the specified FOV.

Solution: Larger FOVs reduce/eliminate aliasing (wrap around) artifacts.

Gibb's Ringing

- Spurious ringing around sharp & high-contrast edges
 - More common in low resolution, high contrast images.
 - Phase encode direction is commonly lower resolution.
- Can reduce by:
 - Acquiring higher resolution images
 - Filtering k-space data, reducing oscillations in the image

Solution: Higher resolution imaging and filters reduce Gibbs's ringing.

Effects of Resolution

	32	64	128	256
32				
64				
128				
256				

Increasing resolution reduces Gibb's ringing

Frequency Encoding Artifacts

Chemical Shift Artifact

- "First Kind"
 - Displacement/mis-registration of fatty tissues
 - Worse with lower receiver bandwidth
 - Frequency encoding artifact
- "Second Kind"
 - Signal cancellation due to in-phase and out-of-phase fat and water within a pixel
 - Seen in GRE (not spin echo)
 - "India ink artifact"
 - Not specifically a frequency encoding artifact

Solution: Higher bandwidth imaging reduces chemical shift Type-1.

Chemical Shift Artifact - Type 2

In-Phase

Opposed-Phase

Solution: In-phase TE with GRE reduces chemical shift Type-2. Not seen on spin echo.

Flow and Motion Artifacts

Breathing (Motion) Artifacts

Free Breathing

Breath held

Free Breathing

Motion artifacts appear in the phase encode direction.

Breathing (Motion) Artifacts

Averaging and breath holding can reduce respiratory artifacts.

Respiratory Motion Artifact Reduction

- Communicate
 - Increase awareness & alertness
- Decrease breath hold time
 - ↓ spatial and/or temporal resolution
- Back-up Plan
 - Averaging
 - Respiratory bellows gating
- Advanced methods
 - Navigator or bellows gated imaging
 - Realtime MRI

bSSFP - Blood Flow Artifacts

Solution: For bSSFP use the highest available bandwidth to limit flow artifacts.

Figure 1 (A-F): Sagittal T2-weighted images showing syrinx in cervical (A) and thoracic (B) cord; faint flow voids (arrows) are seen within the syrinx. (C, D): Axial T2-weighted images of cervical cord with (c) and without (d) flow compensation; flow voids (arrows) are more obvious in D (without flow compensation). (E, F): Axial T2-weighted images of thoracic cord with (E) and without (f) flow compensation; flow voids (arrows) are more obvious in F (without flow compensation).

Solution: For gradient echo imaging use flow compensation (longer TE/TR).

http://www.ijri.org/viewimage.asp?img=IndianJRadioIImaging_2013_23_1_97_113626_f1.jpg

More Artifacts!

Gradient Non-linearity

- Basic <u>assumption</u> in MRI is that the zcomponent of the B-field created by the gradient coils varies <u>linearly</u> with x, y, or z over the FOV.
- Higher gradient amplitudes and slewrates can be achieved by compromising on spatial linearity.
- Gradient non-linearity causes geometric and intensity distortions.

Gradient Non-linearity

Image warping parameters that are system specific and applied to all images.

Image Courtesy of M.T. Alley & B.A. Hargeaves

k-space spikes

k-space

image space

A *k*-space spike creates a banding artifact.

Noisy Spike Artifacts

Data Clipping

- Received signal saturates the receiver
- Peak signal usually in the middle of *k*-space, therefore loose low spatial frequency information
 - Contrast
 - Intensity
- Pre-scan procedure usually avoids data clipping by adjusting receiver gains

Data Clipping

<section-header><section-header><section-header><text><image>

Susceptibility Artifact

- Arises from B₀ perturbations caused by a mismatch in magnetic susceptibility.
- Common near metal/tissue and air/tissue boundaries.

Coin Placed Near Phantom

Images Courtesy of <u>http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts.html</u>

Radiofrequency Interference

- Caused by RF leak
 - Scanner Door is Open
 - Wires running in/out of scan room
 - Faulty Room Shielding

Images Courtesy of <u>http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts.html</u>

How many artifacts can you see?

How many artifacts can you see?

Noise Gradient Distortion Gibb's Ringing Chemical Shift Coil shading

Summary

UCLA Radiology - MRI Scanners

Department of Radiology -MRI Research

Dieter Enzmann, M.D. Professor & Chair

MRRL Faculty

Albert Thomas, Ph.D. Professor

Peng Hu, Ph.D. Associate Professor

Ben Ellingson, Ph.D. Associate Professor

Holden Wu, Ph.D. Assistant Professor

Kyung Sung, Ph.D. Assistant Professor

MRRL: Mission Statement

Our goal is the development, validation, standardization, and clinical deployment of <u>quantitative</u> <u>MRI</u> techniques for basic science understanding, early diagnosis, treatment guidance, therapeutic response assessment, and prediction of critical biological features for clinical neurology, cardiology, and oncology.

2016 MRRL Annual Retreat @Santa Barbara

MR Innovations and New Directions

Quantitative Imaging

Integrated Diagnostics

MRI, histopathology, molecular, genetic, clinical

Artificial Intelligence

Support / inform clinical decision making

Intra-Departmental Collaborators

Ely Felker

DCVI

David Lu

Steven Raman

Breast Imaging Section

Stephanie Lee-Felker

Pediatric Imaging Section

Ghahremani

Center for Computer Vision and Imaging Biomarkers (CVIB)

Inter-Departmental Collaborators

Thanks

Kyung Sung, PhD ksung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab/

Images/Slides Courtesy of

Daniel Ennis, Ph.D.