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Purpose: Direct aperture optimization (DAO) attempts to incorporate machine constraints in the

inverse optimization to eliminate the post-processing steps in fluence map optimization (FMO) that

degrade plan quality. Current commercial DAO methods utilize a stochastic or greedy approach to

search a small aperture solution space. In this study, we propose a novel deterministic direct aperture

optimization that integrates the segmentation of fluence map in the optimization problem using the

multiphase piecewise constant Mumford-Shah formulation.

Methods: The Mumford-Shah based direct aperture optimization problem was formulated to include an

L2-norm dose fidelity term to penalize differences between the projected dose and the prescribed dose,

an anisotropic total variation term to promote piecewise continuity in the fluence maps, and the multi-

phase piecewise constant Mumford-Shah function to partition the fluence into pairwise discrete seg-

ments. A proximal-class, first-order primal-dual solver was implemented to solve the large scale

optimization problem, and an alternating module strategy was implemented to update fluence and deliv-

ery segments. Three patients of varying complexity—one glioblastoma multiforme (GBM) patient, one

lung (LNG) patient, and one bilateral head and neck (H&N) patient with 3 PTVs—were selected to test

the new DAO method. For each patient, 20 non-coplanar beams were first selected using column genera-

tion, followed by the Mumford-Shah based DAO (DAOMS). For comparison, a popular and successful

approach to DAO known as simulated annealing—a stochastic approach—was replicated. The simulated

annealing DAO (DAOSA) plans were then created using the same beam angles and maximum number of

segments per beam. PTV coverage, PTV homogeneity D95
D5

� �
, and OAR sparing were assessed for each

plan. In addition, high dose spillage, defined as the 50% isodose volume divided by the tumor volume,

as well as conformity, defined as the van’t Riet conformation number, were evaluated.

Results: DAOMS achieved essentially the same OAR doses compared with the DAOSA plans for the

GBM case. The average difference of OAR Dmax and Dmean between the two plans were within

0.05% of the plan prescription dose. The lung case showed slightly improved critical structure spar-

ing using the DAOMS approach, where the average OAR Dmax and Dmean were reduced by 3.67% and

1.08%, respectively, of the prescription dose. The DAOMS plan substantially improved OAR dose

sparing for the H&N patient, where the average OAR Dmax and Dmean were reduced by over 10% of

the prescription dose. The DAOMS and DAOSA plans were comparable for the GBM and LNG PTV

coverage, while the DAOMS plan substantially improved the H&N PTV coverage, increasing D99 by

6.98% of the prescription dose. For the GBM and LNG patients, the DAOMS and DAOSA plans had

comparable high dose spillage but slightly worse conformity with the DAOMS approach. For the

H&N plan, DAOMS was considerably superior in high dose spillage and conformity to the DAOSA.

The deterministic approach is able to solve the DAO problem substantially faster than the simulated

annealing approach, with a 9.5- to 40-fold decrease in total solve time, depending on the patient case.

Conclusions: A novel deterministic direct aperture optimization formulation was developed and evalu-

ated. It combines fluence map optimization and the multiphase piecewise constant Mumford-Shah seg-

mentation into a unified framework, and the resulting optimization problem can be solved efficiently.

Compared to the widely and commercially used simulated annealing DAO approach, it showed compa-

rable dosimetry behavior for simple plans, and substantially improved OAR sparing, PTV coverage,

PTV homogeneity, high dose spillage, and conformity for the more complex head and neck plan.

© 2017 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12529]

Key words: direct aperture optimization, piecewise constant segmentation

1. INTRODUCTION

Intensity modulated radiation therapy (IMRT) was theorized

in the 1980s1 and subsequently developed in several land-

mark papers.2–4 Since then, IMRT has been widely accepted

into radiation therapy clinics as the staple approach to radio-

therapy. While IMRT has been proved exceptional in control-

ling of dose distributions, one major weakness lies in the

fluence map optimization (FMO), which does not consider

machine constraints in the inverse optimization and produces
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optimal fluence maps that need to be converted to deliverable

multileaf collimators (MLC) sequences. While several clever

sequencing methods have been developed, such as sliding

window or the reducing level method,5 this additional post

processing step, separate from initial FMO inverse optimiza-

tion, leads to varying degrees of degradation in the dose qual-

ity that often require plan reoptimization, which is ineffective

to address the problem.

The process of converting a fluence map into deliverable

apertures and be divided into two steps. First, a stratification

step is performed, which bins the fluence’s intensity values

into patches of discrete levels. The patches are referred to as

apertures in the context of IMRT. Typically, to reduce the dis-

cretization levels, the fluence maps need to be smoothed, more

so for complicated and heavily modulated plans. In the second

step, MLC motion trajectories are determined to efficiently

deliver the apertures. Because of the modification to the opti-

mized fluence map, the first step of stratification contributes

most to the dosimetry degradation. Figure 1(a) illustrates the

workflow of conventional fluence map optimization, followed

by the stratification and the MLC sequencing step.

To alleviate the problem and produce simpler fluence maps

that suffer a smaller loss in stratification, a total variation regu-

larization term on the fluence maps was incorporated in the

original optimization problem6–9 to encourage piecewise

smoothness. Computationally, we recently showed that a first

order primal dual method is efficient to solve the large scale

non-differentiable optimization problem.9 However, as shown

in Fig. 1(b), additional stratification is still needed to convert

the piecewise smooth fluence map to apertures of uniform

intensities, degrading the plan from its optimized version.

Direct aperture optimization (DAO) was invented to cir-

cumvent the stratification problem by optimizing the aper-

tures instead of the beamlets [Fig. 1(c)]. One significant

challenge with DAO is that the number of possible apertures

as the combination of beamlets is mathematically intractable.

To manage the challenge, stochastic and greedy approaches

have been implemented. The stochastic DAO method utilizes

a simulated annealing process10 to iteratively update the aper-

ture shapes and intensity values.11–18 Another stochastic

approach of DAO employs a genetic algorithm to find a set

deliverable segments with best fitness.19 Genetic algorithms,

inspired by the process of natural selection, operates by hav-

ing a population of solutions, and then performing genetic

operations—such as crossover and mutations—on the fittest

solutions in an attempt to increase the fitness value. The

stochastic nature of the genetic algorithms stems from

the random decisions made during the genetic operations. In

the greedy approach, DAO plans are created by optimizing a

predetermined library of apertures, and a column generation

method to expand the aperture library until an acceptable

treatment plan is acquired.20–22 These DAO methods result in

plans that are directly deliverable by the machine without the

need for a separate stratification step but there are significant

limitations. Due to the computational cost, these methods can

only search a small fraction of the possible apertures, which

may be insufficient for complex IMRT plans.

In this study, we aim to overcome the limitations in exist-

ing fluence map and direct aperture optimization methods.6–9

Instead of incorporating the TV regularization that encour-

ages piecewise smoothness, we incorporate a new regularizer

where the fluence map stratification problem is formulated as

a piecewise constant segmentation problem. The new regular-

izer would encourage piecewise constant patches that are

equivalent to apertures to eliminate the need for post-optimi-

zation stratification [Figure 1(d)].

Piecewise constant segmentation is a well-researched image

processing topic, aimed at approximating an original grayscale

image by a few uniform-intensity patches. Following the origi-

nal Mumford-Shah formulation,23–26 which was used to find

(a)

(b)

(c)

(d)

FIG. 1. Schematic of the fluence map optimization and MLC segmentation process. (a) Conventional fluence map optimization followed by smoothing and stratifi-

cation. Because the smoothing is done post optimization, the plan quality degradation is often substantial. (b) Total variation regularization integrate in the fluence

map optimization, resulting smaller losses in stratification and fewer intensity levels. (c) The current direct aperture optimization work flow. (d) The proposed piece-

wise constant Mumford-Shah segmentation regularized fluence map optimization resulting in a few discretized patches that bypass the stratification step.
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the piecewise smooth approximation of grayscale images,

recent developments have led to multiphase piecewise constant

versions of the formulation.24,25,27–30 In particular, the devel-

opment of the Chan-Vese functional and algorithm,27 which

used level-set functions to define segments in the image,

achieved the piecewise-constant property by only defining one

value per segment. The piecewise constant version of the

Mumford-Shah formulation, inspired by Chan-Vese formula-

tion, utilizes a convexly relaxed labeling array instead of level

set functions. By finding the minimizer of the Mumford-Shah

formulation, an image can be segmented into multiple continu-

ous regions, and a single value is assigned to each region dur-

ing the optimization for the piecewise constant property. This

is pertinent to the IMRT optimization problem, because the

piecewise constant segmented regions are arbitrarily shaped, it

provides a mathematically complete description of all possible

MLC apertures for a specific fluence map.

In this study, we integrate the multiphase piecewise con-

stant Mumford-Shah function with the fluence map optimiza-

tion problem into a multiconvex formulation31,32—a non-

convex problem that yields a convex subproblem when all

but one block of variables are held constant. This is com-

monly evaluated by an alternating module scheme. We then

test the feasibility of this optimization on several patient cases

and compare its performance to the DAO method using simu-

lated annealing.

2. METHODS

The methods section is organized as follows. First, the

novel deterministic DAO formulation is proposed. Second, a

notations table of the important variables and data are pre-

sented. Third, the block alternating module approach to solv-

ing the DAO formulation is explained. Fourth, the simulated

annealing DAO approach for comparison is described. Last,

the evaluation details to test the performance to the

Mumford-Shah based DAO and compare it to the simulated

annealing DAO are explained.

2.A. Deterministic direct aperture optimization
formulation

The master optimization formulation is written as

where the notations for the data and variables used in the

DAO formulation are described in Table I.

Term 1 is the dose fidelity term which attempts to opti-

mize the fluence, x, such that the projected dose, Ax, is penal-

ized for deviations from the prescription dose, d. The

structures of interest are weighted by the diagonal matrix, W.

Term set 2 is the anisotropic total variation regularization on

the fluence maps to promote piecewise continuous fluence

maps.9 The matrices, Dk and D⊥, take derivatives parallel

and orthogonal to the MLC leaf direction.

Term sets 3 and 4 belong to the multiphase piecewise con-

stant Mumford-Shah formulation,23–25,27–30 which partitions

each fluence map into ns discrete segments. The function, for

this study, utilizes the anisotropic version of total variation to

account for the MLC leaf direction. The convexly relaxed

segmentation labeling array, u, has been successfully applied

to the Mumford-Shah formulation for piecewise constant seg-

mentation.25,30 The rows of the labeling array, ubp, are subject

to the probability simplex, which is described by two con-

straints on ubp—the elements of ubp are non-negative and

their sum is equal to 1. This probability simplex constraint is

applied to push ubps to equal 1 for the segment where

| xbp � cbs |
2 is the smallest, but the total variation regular-

ization term encourages each segment in u to be piecewise

continuous. The index for segment, s, starts at 0, to account

for a “segment” with zero fluence or completely closed

MLC. By integrating MLC segmentation with FMO in a sin-

gle objective function, the beam apertures become optimiz-

able variables directly contributing to the dosimetry.

argmin

x; u; c

1

2

���W
Xnb

b¼1

Abxbð Þ � d

 !���
2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term 1:Dose Fidelity

þ
Xnb

b¼1

k1kD
k
bxbk1 þ k2kD

?
b xbk1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term Set 2:Anisotropic TV onFluence

þ c
Xnb

b¼1

1

2

Xnp

p¼1

Xns

s¼0

ubpsjxbp � cbsj
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term Set 3

þ
Xns

s¼0

xk1D
k
bubsk1 þ x2kD

?
b ubsk1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term Set 4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Multiphase Piecewise Constant Mumford�Shah Formulation

0
BBBBBBBBB@

1
CCCCCCCCCA

ð1Þ

subject to x� 0

u� 0

1
*

Tubp ¼ 1;

Medical Physics, 0 (0), xxxx

3 Nguyen et al.: Deterministic direct aperture optimization 3



TABLE I. Important notations and data structures used in the study.

Notation Type Description

Indices

B Index Index for beam. b 2 1; 2; . . .; nbf g

P Index Index for beamlet. p 2 1; 2; . . .; np
� 	

S Index Index for segment. s 2 0; 1; 2; . . .; nsf g

Optimization variables

X Vector All beamlet intensities from all selected beams.

xb Vector All beamlet intensities for the bth beam.

x ¼

xb¼1

.

.

.

xb¼nb

2
64

3
75

xbp Scalar

Intensity value for the pth beamlet of the bth beam. xb ¼

xb;p¼1

.

.

.

xb;p¼np

2
64

3
75

C Matrix Intensity values for all segments and beams.

cb Vector

Intensity values for all the segments of the bth beam. c ¼

cTb¼1

.

.

.

cTb¼nb

2
64

3
75

cbs Scalar

Intensity value for the sth segment of the bth beam. c ¼

cb¼1;s¼1 � � � cb¼1;s¼ns

.

.

.
.
.

.
.
.
.

cb¼nb;s¼1 � � � cb¼nb ;s¼ns

2
64

3
75cb ¼

cb;s¼1

.

.

.

cb;s¼ns

2
64

3
75

U Matrix Segmentation labeling array for all selected beams.

ub Matrix

Segmentation labeling array for the bth beam. u ¼

ub¼1

.

.

.

ub¼nb

2
64

3
75

ubs Vector Probability that the beamlets from the bth beam belong to the sth segment. ub ¼ ub;s¼1 � � � ub;s¼ns½ �

ubp Vector

Segment probabilities for the pth beamlet of the bth beam.Lives in probability simplex. ub ¼

uTb;p¼1

.

.

.

uTb;p¼np

2
664

3
775

ubps Scalar Probability that the pth beamlet of the bth

beam belongs to the sth segment. ub ¼

ub;p¼1;s¼1 � � � ub;p¼1;s¼ns

.

.

.
.
.

.
.
.
.

ub;p¼np ;s¼1 � � � ub;p¼np;s¼ns

2
64

3
75ubs ¼

ub;p¼1;s

.

.

.

ub;p¼np ;s

2
64

3
75ubp ¼

ub;p;s¼1

.

.

.

ub;p;s¼ns

2
64

3
75

Other data

A Matrix Fluence-to-dose transformation matrix from all selected beams.

Ab Matrix Fluence-to-dose transformation matrix for the bth beam. A ¼ Ab¼1 � � � Ab¼nb½ �

W Matrix Weighting matrix for structures of interest.

D Vector Prescription dose the PTV and zero elsewhere.

D
k Matrix Derivative matrix for all fluence maps from all beams.

Takes derivative parallel to the MLC leaf motion.

D
k
b Matrix

Derivative matrix for fluence map of bth beam. Takes derivative parallel to the MLC leaf motion. Dk ¼

D
k
b¼1 � � � 0

.

.

.
.
.

.
.
.
.

0 � � � D
k
b¼nb

2
664

3
775

D⊥ Matrix Derivative matrix for all fluence maps from all

beams. Takes derivative perpendicular to the MLC leaf motion.

D?
b Matrix Derivative matrix for fluence map of bth beam. Takes

derivative perpendicular to the MLC leaf motion. D? ¼

D?
b¼1 � � � 0

.

.

.
.
.

.
.
.
.

0 � � � D?
b¼nb

2
64

3
75

Q Matrix An intermediate variable that has the same structure and

subscript notation as ue. Is used in the appendix, section A3. qbps ¼
1
2




xbp � cbs





2
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Term set 3 is not convex, rendering the whole objective

formulation non-convex. Fortunately, the formulation is mul-

ticonvex31,32—by updating one variable while holding the

other two constant, we have a convex module. Similar to a

previous study,33 the algorithm is broken down into three

modules, which are evaluated in an alternating block fashion.

2.A.1 Module 1

Module 1 updates x while holding u and c constant. The

formulation for module 1 is written as

The optimization formulation can be solved with a proxi-

mal-class, first-order primal-dual algorithm known as the

Chambolle-Pock algorithm.25,34 This study uses the overre-

laxed version of the algorithm35 for faster convergence rate,

as well as a preconditioning process34 to select the step size.

A detailed explanation of the Chambolle-Pock algorithm, as

well as its application to module 1, can be found in the

Appendix.

2.A.2 Module 2

Module 2 updates c, while holding x and u constant. Fol-

lowing the initial update of u, c is first initialized to be

cbs ¼
s

ns
max xbð Þ for all b; s; (3)

and the subsequent iterations will update c using a closed

form solution24

cbs ¼
uTbsxb

uTbs 1
* for all b; s: (4)

In the case where uTb;s¼k 1
*
¼ 0, its corresponding cb,s = k

takes on an average value from its neighbor values. In other

words cb;s¼k ¼
1
2
cb;s¼k�1 þ cb;s¼kþ1

� �
. If this turned off seg-

ment happens to be the last segment, meaning that

uTb;s¼ns
1
*
¼ 0, then cb;s¼ns ¼ 2 � cb;s¼ns�1. By default, cb,s = 0

will always be set at zero to define an “off” segment. This

strategy is implemented to assign an otherwise undefined

cb,s = k a unique non-zero value, which may be effective in

finding useful segments.

2.A.3 Module 3

Module 3 updates u, while holding x and c, constant. The

terms in the objective setting that have u are simply the terms

that belong to the Mumford-Shah function:

where c weighting is ignored during module 3 since it

does not influence the outcome of the optimization in

Eq. (5). The formulation shown in Eq. (5) can also be

efficiently evaluated using the preconditioned overrelaxed

Chambolle-Pock algorithm, which is described in the

Appendix.

2.A.4 Alternating module schedule and other

heuristics to handle non-convexity

To allow for a change in the fluence to immediately affect

the average value of its aperture, module 1 and module 2 are

alternated back-to-back, updating c as soon as x is updated.

After the active modules 1 and 2 update x and c, module 3

will then update u. This routine would repeat until the aper-

ture shapes converged to a constant shape. After analysis with

a test case, the number of subiterations for each module was

decided to be 100 for modules 1 and 2, and 1500 for

module 3.

Once the aperture shapes have converged, a check is

taken to see if u has converged to 1s and 0s. If not, then

the ubps with the highest value in its vector, ubp, is assigned

to 1 and the rest are assigned to 0. A polishing step is

added where the intensity values are directly optimized

while the apertures are locked. The polishing optimization

takes the form of

argmin
c

1
2

���W
Pnb
b¼1

ðAbubcbÞ � d

� ����
2

2

subject to c� 0;
(6)

where the aperture intensities c are the only optimization vari-

ables. The polishing step allows for fine tuning of the aper-

ture intensities that has been shown to improve the dosimetry.

Ultimately, the aperture shapes and intensities are obtained

argmin
x

1
2

���W
Pnb
b¼1

ðAbxbÞ � d

� ����
2

2
þ
Pnb
b¼1

k1kD
k
bxbk1 þ k2kD

?
b xbk1

� �
þ c

2

Pnb
b¼1

Pnp

p¼1

Pns
s¼0

ubpsjxbp � cbsj
2

subject to x� 0:

(2)

argmin
u

Pnb
b¼1

1
2

Pnp

p¼1

Pns
s¼0

ubps




xbp � cbs





2

þ
Pns
s¼1

ðx1kD
k
bubsk1 þ x2kD

?
b ubsk1Þ

 !

subject to
u� 0

1T
*

ubp ¼ 1;

(5)
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from u and c to reconstruct the piecewise constant fluence

maps.

To ensure an acceptable local minimum that emphasizes

the dose fidelity, a graduated weighting technique was

implemented, where c starts at 0 and is monotonically

increased over the course of the optimization, until it

reaches a max value cmax. The idea behind this technique

is to start with the convex part of the objective function

that includes the dose fidelity term. During the optimiza-

tion, the non-convexity is slowly introduced into the prob-

lem, ensuring that the optimized fluence segments still

result in high dose fidelity. The c was chosen to monotoni-

cally increase via the equation c ¼ cmax �min 1; k

k̂

� �8� �
,

where k is the current subiteration number for the updates

involving modules 1 and 2, and k̂ is a set subiteration num-

ber when c = cmax for the first time. For all patients in this

study, k̂ was set to 500, which would allow for the alternat-

ing module schedule to cycle through 5 times before

c = cmax. Note that c is not updated while module 3 is

active, since c does not directly influence the outcome of

module 3. A pseudocode is provided in (7) order to pro-

vide clarity on the update scheme:

k̂ ¼ 500

k ¼ 1

while not converged do

for 100 iterations

update xðModule1Þ

update cðModule2Þ

c ¼ cmax �min 1;
k

k̂

� �8
 !

k ¼ k þ 1

end for

for 1500 iterations

update uðModule3Þ

end for

end while

polishing step

(7)

2.B. Simulated annealing DAO

Simulated annealing is a stochastic technique developed

for non-convex optimization,10 and has been successfully

used for DAO.11–17 We developed simulated annealing based

DAO for comparison. Starting from an initial set of apertures

such as the conformal aperture from beams’ eye view, the

method randomly selects either to change an aperture inten-

sity or a leaf position for modification. A random number

from a Gaussian distribution is sampled to determine the size

and direction of the change. The standard deviation, SD, of

the Gaussian is defined as

SDleaf ¼ 1þ #� 1ð Þ
1

nsucc þ 1ð Þ1=T
step

0

SDintensity ¼ #� 1ð Þ
1

nsucc þ 1ð Þ1=T
step

0

; (8)

where ϑ is the initial value, nsucc is the number of successes,

and T
step
0 defines the cooling rate.10 A success is defined as a

change that results in a decrease of the cost function. Since

the leaf position is quantized by beamlets, SDleaf is defined

such that the smallest possible value is 1 beamlet. On the

other hand, SDintensity is allowed to diminish to 0.

Once either the aperture intensity or the leaf position is

randomly modified, a cost function is evaluated. For this

study, the cost function used is the dose fidelity term of

Eq. (1):

minimize
1

2

���W
Xnb

b¼1

ðAbxbÞ � d

 !���
2

2
; (9)

where xb a function of the leaf positions and aperture intensi-

ties—the variables that simulated annealing will be affecting

directly. The theoretical leaf positions are constrained such

that the two leaves on the same row will not overlap, and the

aperture intensities are constrained to be non-negative. While

the cost function in Eq. (9) is convex, the conversion of the

leaf positions and aperture intensity information to xb is non-

convex. Any change that results in decreasing the cost value

is accepted. If the change increases the cost value, the change

can still be accepted with a probability defined as

Paccept ¼ /
1

nsucc þ 1ð Þ1=T
prob

0

; (10)

where φ is the initial probability of acceptance, and T
prob
0

defines the cooling rate. The motivation for allowing changes

that increase the cost function is to allow for the jumping out

of local minima.

2.C. Evaluation

Three planning cases—one glioblastoma multiforme

(GBM) patient, one lung (LNG) patient, and one head and

neck (H&N) patient with 3 PTVs at different prescription

levels—were evaluated in this study to test the feasibility of

the optimization formulation. Using a collapsed cone

TABLE II. Number of allowed segments per beam, prescription dose, and

PTV volume for each patient.

Patient

Number of allowed

segments per beam (ns)

Prescription

dose (Gy) PTV volume (cc)

Glioblastoma

multiforme

10 30 57.77

Lung 10 50 47.84

Head & neck 20 54 197.54

59.4 432.56

69.96 254.98
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convolution/superposition code with a 6 MV polyenergetic

kernel—with a dose array resolution of (0.25 cm)3 and a

beamlet size of (0.5 cm)2—the beamlet dose was calculated

for 1162 beams, evenly spaced across the 4p steradian. After

beam angles that would cause gantry to couch/patient colli-

sions were removed, a column generation and pricing

approach22,36–41 was utilized to automatically select 20 beam

angles for each patient. The beamlet dose of the selected

beams are stored in the dose array, A, for optimization. A

shell structure around the PTV and skin structure were added

to every patient to reduce dose spillage outside the PTV. The

thickness of the shell structure was calculated based on the

equation: thicknessshell ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
4p
TV3

q
, where TV is the target

volume.

Patient plans were created using Mumford-Shah based

DAO (DAOMS) and simulated annealing DAO (DAOSA). The

same beam angles and number of allowed segments per beam

are used for both DAOMS and DAOSA for the same patient.

The allowed number of segments, prescription doses and PTV

volumes for three patients are shown in Table II. To ensure an
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unbiased plan comparison, the weighting matrices W of

DAOMS and DAOSA plans are iteratively updated to outper-

form each other in terms of OAR sparing and PTV coverage

and homogeneity until further improvement in one aspect is

impossible without sacrificing the other. At the end, with the

same fidelity term, the structure weightings used by both the

DAOMS plans and the DAOSA plans were found to be similar.

For evaluation, all treatment plans were normalized such

that 100% of the prescription dose is delivered to 95% of the

PTV. For the H&N case, the 69.96 Gy PTV was used for nor-

malization. PTV homogeneity D95
D5

� �
, D98, D99, and Dmax

were evaluated to assess the PTV coverage, hot spots, and

homogeneity. OAR Dmax and Dmean were assessed to deter-

mine dose sparing to the critical structures. Dmax is defined

as the dose at 2% of the structure volume, D2, which is rec-

ommended by the ICRU-83 report.42 To quantitate the

amount of high dose spillage to the normal tissue, R50,

defined as the 50% isodose volume divided by the target vol-

ume, was determined. Last, the van’t Reit conformation num-

ber (VRCN)43 was also assessed. VRCN is defined as
TVRI

TV
� TVRI

VRI
, where TVRI is the target volume covered by the

reference isodose, TV is the target volume, and VRI is the vol-

ume of the reference isodose. van’t Reit conformation number

is global conformity index that takes into account both the

irradiation of the target volume and healthy tissues, and

ranges from 0 to 1, with 1 being the perfect case. For the

H&N case, the R50 and VRCN values were calculated using

the sum of all 3 PTVs as the target volume and 54 Gy as the

reference dose.

The computer used to solve the optimizations has 32 GB

RAM, an NVIDIA GeForce GTX 690, and an Intel Core i7-

3960X CPU, with six physical cores overclocked to

4.00 GHz.

3. RESULTS

Figure 2 shows the DVHs of all patients. The GBM

DAOMS and DAOSA plans are almost identical in OAR doses

with difference less than 0.05% of the prescription dose. For

the LNG case, the DVH shows that the DAOMS method was

able to better spare the proximal bronchus dose, but other-

wise, the two methods performed similarly. On average, for

the LNG case, the DAOMS method was able to spare proximal

bronchus Dmax by 3.67% and Dmean by 1.08% of the prescrip-

tion dose. For the more complicated H&N plan, the DAOMS

plan evidently improved OAR sparing compared to the

DAOSA plan, with as much as a 13 Gy reduction to the spinal

cord. The improvement is consistent for all OARs in the

H&N DAOMS plan. On average, Dmax and Dmean were

reduced by 10.91% and 10.58% of the prescription dose. The

OAR sparing is summarized in Table III.

Table IV shows PTV dose statistics, as well the dose spil-

lage (R50) and the conformity number (VRCN). On average,

the PTV was better covered using DAOMS. D98 and D99 was

increased by 1.66% and 2.21% of the prescription dose. The

H&N plan had the largest improvement in dose coverage,

with an increase as large as 3.77 Gy in D99 for the 54 Gy

PTV. The average homogeneity of the two planning methods

TABLE III. Largest, smallest, and average values found for DDAOMS
� DDAOSA

ðGyÞð Þ dose differences for Dmax and Dmean. Negative values represent dose sparing

for DAOMS, while positive values represent dose sparing for DAOSA. OARs that received 0 Gy in both cases are excluded in the evaluation.

Dose difference

DDAOMS
� DDAOSA

ðGyÞð Þ

Dmax Dmean

Largest value Smallest value Average value Largest value Smallest value Average value

GBM +0.021

Chiasm

�0.031

L Eye

�0.004 +0.003

Chiasm

�0.003

L Eye

�0.0004

LNG +0.036

Trachea

�3.000

ProxBronch

�1.835 +0.004

Trachea

�1.593

ProxBronch

�0.541

H&N �0.162

L Opt Nrv

�13.067

Spinal Cord

�5.891 �0.046

R Opt Nrv

�13.073

Esophagus

�5.714

TABLE IV. Comparison of the PTV homogeneity, D98, D99, and Dmax, as well as R50 and VRCN.

Patient Case

PTV Statistics

R50 VRCNHomogeneity
D98 D99 Dmax

DAOMS DAOSA DDAOMS
� DDAOSA

ðGyÞ DAOMS DAOSA DAOMS DAOSA

GBM 0.954 0.952 +0.089 +0.174 �0.047 2.553 2.712 0.816 0.847

LNG 0.938 0.951 +0.294 +0.494 +0.935 2.840 2.680 0.831 0.892

H&N 54 0.895 0.853 +2.626 +3.771 �1.595 2.248 3.074 0.748 0.607

59.4 0.850 0.833 +1.237 +1.448 �0.483

69.96 0.904 0.892 +0.153 �0.101 �1.054

Average 0.908 0.896 +0.880 +1.157 �0.449 2.547 2.822 0.798 0.782
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is similar with DAOMS being slightly better by 0.012. The

average R50 and VRCN was more clearly improved in the

H&N case using DAOMS. The R50 for the GBM and LNG

cases were similar for the two plan types, differing by 0.16.

For the H&N plan, R50 was lowered by 0.826 and VRCN

was increased by 1.355 using DAOMS, indicating substan-

tially improved dose compactness and conformality.

Figure 3 shows the isodose comparison. The low dose

cutoff for viewing was set at 10% of the prescription dose.

Qualitatively, the dose distributions produced by the

DAOMS and the DAOSA methods for GBM and LNG plans

are similar. On the other hand, the dose distribution differ-

ences of the H&N plans are more compelling. The dose is

visually more compact in the DAOMS plan, with lower dose

to the brainstem, spinal cord, and posterior neck region in

the sagittal slice, as well as the larynx and left parotid in

the coronal slice.

Figure 4 shows an example of MLC segments and resul-

tant fluence map for the GBM patient. The pairwise disjoint

nature of the piecewise constant Mumford-Shah formulation

is apparent in the segmentation results, as the DAOMS seg-

ments do not overlap. The DAOSA MLC segments, on the

other hand, can overlap, resulting in more complex fluence.

On average, the size of DAOMS segments is smaller than that

of DAOSA. Interestingly, Table V shows that none of the

planning methods utilized the maximal allowed segments for

delivery.

FIG. 3. Isodose of the GBM, LNG, and H&N patients. The low dose cutoff

for viewing was set to be 10% of the prescription dose.

FIG. 4. Schematic of an optimized fluence from each plan type, and the

breakdown of the fluences to their segments.

TABLE V. Aperture statistics for the DAOMS and the DAOSA methods for the

patient cases.

Allowed

number

of segments

per beam nsð Þ

Average number of

solved segments per

beam

Mean number of

beamlets in a

segment

DAOMS DAOSA DAOMS DAOSA

GBM 10 6.10 7.80 6.72 17.51

LNG 10 9.40 9.15 4.93 14.93

H&N 20 16.00 10.20 8.84 50.50
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DAOMS is substantially faster than DAOSA, with a 9.5 to

40 fold decrease in total solve time. The number of times

retuning the weights was greater for the DAOMS approach

because it was run 2–3 times in the beginning before the

first iteration of the DAOSA approach, which then adopted

the DAOMS weights as its starting point. Figure 5 shows

example convergence plots for the GBM case. The DAOMS

approach is able to consistently lower the cost function,

since each module is a convex subproblem. The stochastic

property of simulated annealing causes the cost function to

randomly increase at times, while attempting to escape

from local minima. Figure 5 and Table VI highlight the

strengths of the multiconvex approach to quickly and deter-

ministically reach a minimum that contains a high quality

dosimetric plan.

4. DISCUSSION

In this study, we developed a novel direct aperture opti-

mization technique that integrates fluence map optimization

—employing L2-norm fidelity and L1-norm regularization

terms—with the multiphase piecewise constant Mumford-

Shah method. We utilized a first-order primal-dual proximal-

class algorithm, known as the Chambolle-Pock algorithm, to

solve the multiconvex direct aperture optimization problem.

This novel method simultaneously solves for the fluence seg-

ments while minimizing the dose fidelity term offers a num-

ber of advantages.

Ultimately, DAOMS result in perfectly piecewise constant

fluence maps that are equivalent to apertures without addi-

tional stratification. The piecewise constancy cannot be

achieved with total variation regularization alone6–9, because

total variation energies do not differentiate piecewise smooth

and piecewise constant functions.

The optimization formulation offers an elegant theoretical

description of the physical problem. The fidelity term penal-

izes deviations from the prescription dose, the total variation

term promotes piecewise smoothness on the fluence map,

and the piecewise constant Mumford-Shah formulation

defines segments that constitute the fluence map. As a non-

convex optimization, this method cannot guarantee to find

the global minima of the problem. However, with the gradu-

ated weighting technique on the non-convex term, the opti-

mization is able to find a local minimum that is biased to

TABLE VI. Solve time for one optimization run for each case and plan type.

DAOMS solve times include the polishing step.

Solve time (s)

Number of times

retuning structure

weights

DAOMS DAOSA DAOMS DAOSA

GBM 599.8 5719.6 6 4

LNG 647.1 25747.7 7 4

H&N 2170.2 35682.8 11 10
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FIG. 5. Example convergence plots for the GBM case. For DAOMS, the light-shaded regions represent where module 1 and module 2 are updating x and c at each

subiteration. The dark-shaded region represents where module 3 is updating u, and each data point in the blue region represents 15 subiterations. Objective value

calculation for DAOMS uses the cmax value for all iterations.
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satisfying to dose fidelity term. By slowly introducing

the non-convexity, optimizer can begin to form segments for

the fluence map that indirectly penalize deviations between the

projected dose and the prescription dose.

In addition to its theoretical appeal, the deterministic mul-

ticonvex approach offers practical advantages in computa-

tional speed and dosimetric performance, compared to the

existing stochastic simulated annealing method for DAO. The

DAOSA method struggled to include more apertures in the

optimization but the explicit addition is heavily penalized by

computational time. Given the vast number of possible aper-

tures as a combination of beamlets, the previous methods are

inherently inefficient. Our method, on the other hand, seg-

ments the MLC apertures on the fly, thus avoiding being lim-

ited to a small subset of possible apertures. As hypothesized,

the advantage is shown more evident for the multilevel head

and neck plan requiring complex modulation.

The Chambolle-Pock algorithm was selected to solve the

optimization problem for several reasons. As a proximal-class

algorithm, it can solve many types of non-differentiable opti-

mization formulations exactly, such as formulations involving

the L1-norm. The algorithm is highly efficient on memory

usage and computation cost because it does not require a to

solve system of linear equations involving the fluence to dose

transformation matrix at every iteration, contrasting to other

methods such as alternating direction method of multipliers

(ADMM).44 The computation cost of Chambolle-Pock relies

on the simple multiplication of a large matrix and its trans-

pose at each iteration.

While the piecewise constant Mumford-Shah term pro-

motes apertures to be MLC deliverable, the DAOMS method

does not explicitly guarantee that the resulting aperture is

MLC deliverable in 1 segment. For example, in Fig. 3, the

last segment of the DAOMS plan is not deliverable for hori-

zontal MLCs. The simplest solution is to break down the seg-

ment into two delivery segments, which should minimally

add to the treatment time since only a small fraction of the

solved segments need to be further broken down.

A drawback of the current approach is that the Mumford-

Shah formulation is designed to describe non-overlapping

segments. The ability to have overlapping segments would

allow for larger and fewer segments. Although the drawback

did not prevent DAOMS from outperforming the stochastic

approach, particularly in complex cases, there is clearly space

for improvement. As a topic of further investigation, the

smaller segment size problem may be alleviated by devising

an improved segmentation algorithm to divide the DAOMS

fluence into fewer and larger overlapping segments, without

modifying the current fluence.

Another interesting observation one can make from the

result is that both methods did not use the maximal allowed

number of segments. For the DAOMS plans, this is due to

the total variation term that reduces the fluence map com-

plexity and subsequently fewer segments. The DAOSA

method, on the other hand, is not regularized to penalize

more segments. Given that DAOSA plans are suboptimal

compared to the DAOMS plans, this reflects the weakness of

using simulated annealing method to search a larger aperture

solution space.

The run time of the DAOSA method used in this study is

noticeably longer than the simulated annealing implemented

commercial software. The longer computational time can be

attributed to the following reasons. First, the plans used 20

beams, which increased the fluence-to-dose transformation

matrix size. Second, the fluence-to-dose transformation

matrices in this study were not downsampled. Last, the plans

allowed many more segments than what would be allowed in

a commercial planning software.

5. CONCLUSION

A novel deterministic direct aperture optimization formu-

lation combining fluence map optimization and multiphase

piecewise constant Mumford-Shah segmentaion into a uni-

fied framework was proposed and evaluated. The new

approach enables generating MLC segments on the fly with-

out being limited to a small subset of possible apertures as

previous methods did. The non-convex optimization formula-

tion was split into multiple convex modules, and solved alter-

natingly using a first-order primal-dual proximal-class

algorithm. The new deterministic method solved the DAO

problem is considerably faster than the simulated annealing

method and is dosimetrically superior, particularly for the

complex head and neck case.
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APPENDIX

A1 The overrelaxed Chambolle-Pock algorithm

The Chambolle-Pock algorithm, a first-order primal dual

algorithm,25,26 has previously been successfully implemented

for fluence map optimization problems.9,33,36,45 The algo-

rithm solves a primal problem of the canonical form

minimize F Kxð Þ þ G xð Þ; (A1)

where F and G are lower semicontinuous functions and K is a

matrix. To solve an optimization problem with Chambolle-

Pock, the optimization must be rewritten to fit this canonical

form. It will be seen later that all optimizations in this study

that use the Chambolle-Pock algorithm can easily be

expressed in this canonical form. The overrelaxed version of

the Chambolle-Pock algorithm35 solves the primal problem

via the iteration
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�xnþ1 ¼ proxsG xn � sKTzn
� �

�znþ1 ¼ proxrF� zn þ rK 2�xnþ1 � xn
� �� �

xnþ1 ¼ q�xnþ1 þ 1� qð Þxn

znþ1 ¼ q�znþ1 þ 1� qð Þzn

; (A2)

where z variable of the dual problem: minimize

G� �KTzð Þ þ F� zð Þ. The Chambolle-Pock algorithm is solv-

ing both the primal and dual problem simultaneously. The

function, F*, is the convex conjugate of F, defined as

F� zð Þ ¼
sup

y
zTy� F yð Þð Þ. The overrelaxation parameter,

q 2 0; 2½ �, can be adjusted to control the convergence. The algo-
rithm degenerates to the original algorithm when p = 1. As a

proximal-class algorithm,46 the Chambolle-Pock algorithm relies

on the “proximal mapping”, or “prox operator”, defined as

proxth xð Þ ¼
argmin

v
h vð Þ þ

1

2t
kv� xk22

� �
; (A3)

where h is a lower semicontinous function and t is a parame-

ter that serves as a step size. Intuitively, proxth xð Þ will try to

find an argument that minimizes h, without straying too far

from x. The efficacy of proximal algorithms relies on that the

function h has a simple evaluation with the prox operator. A

useful property of the prox operator is the separable sum rule,

proxrF�

z1

.

.

.

zn

2
64

3
75

0
B@

1
CA ¼

proxrf �
1
z1ð Þ

.

.

.

proxrf �n znð Þ

2
64

3
75; (A4)

where F

y1

.

.

.

yn

2
64

3
75

0
B@

1
CA ¼ f1 y1ð Þ þ � � � þ fn ynð Þ, and this allows

us to break down F Kxð Þ into a sum of convex functions.

Another valuable property is the Moreau decomposition,

proxrF�ðZÞ ¼ Z � r � proxr�1Fðr
�1zÞ; (A5)

which allows us to calculated the prox operator of the convex

conjugate of a function without having to evaluate the convex

conjugate itself.

In the algorithm, we have the parameters s and r, which

serve as our step sizes during the optimization. These can

be selected based on a diagonal preconditioning

approach34:

sj ¼
1Pi¼nrows

i¼1
Kði;jÞ

ri ¼
1Pi¼ncols

i¼1
Kði;jÞ

s ¼

sj¼1 � � � 0

.

.

.
.
.

.
.
.
.

0 � � � sj¼ncols

2
64

3
75 r ¼

rj¼1 � � � 0

.

.

.
.
.

.
.
.
.

0 � � � ri¼nrows

2
64

3
75;

(A6)

where s and r. are diagonal matrices with the same number

of diagonal elements as the length od x and z, respectively.

The diagonal preconditioning guarantees convergence under

the assumption that F Kxð Þ and G xð Þ have sum separable

operations. In the case where these functions are not sum sep-

arable, but are block separable, it is possible to assign the

block of variables the smallest step size—founduring the pre-

conditioning process—within its block. Otherwise, s and r

can be scalars and follow the relation, srkKk2 ≤ 1, to guaran-

tee convergence. The operator norm, K, can be estimated via

power iteration.47

A2 Solving Module 1 with the Chambolle-Pock
Algorithm

Module 1 updates x, while holding u and c constant. To

solve module 1 with Chambolle-Pock, which solves the opti-

mization of the form minimize F Kxð Þ þ G xð Þ, we first rewrite
problem 2 as:

where the third term is an equivalent expression to

c
2

Pnb
b¼1

Pnp

p¼1

Pns
s¼0

ubps




xbp � cbs





2

. It is written this way as a more

convenient expression for updating x. We then define the

matrix, K, as well as the functions, F and G, as

K ¼

WA

D1

D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðub¼1;s¼0Þ

p

.

.

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðub¼nb;s¼nsÞ

p

2
6666666664

3
7777777775

FðyÞ ¼
1

2
ky1 �Wdk22
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

f1ðy1Þ

þ k1ky2k1|fflfflfflffl{zfflfflfflffl}
f2ðy2Þ

þ k2ky3k1|fflfflfflffl{zfflfflfflffl}
f3ðy3Þ

þ
Xnb

b¼1

Xns

s¼0

1

2
kybs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðubsÞ

p
cbs 1

*

k22

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pnb
b

Pns
s¼0

fbsðybsÞ

GðxÞ ¼
0 if f � 0

1 otherwise
:

�

(A8)

argmin
x

1
2
W

���
Pnb
b¼1

ðAbxbÞ � d

� ����
2

2
þ
Pnb
b¼1

k1kD
k
bxbk1 þ k2kD

?
b xbk1

� �
þ c

2

Pnb
b¼1

Pns
s¼0

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðubsÞ

p
ðxb � cbs 1

*

Þ
���
2

2

subject to x� 0;
(A7)
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Once K, F, and G are defined, the Chambolle-Pock algo-

rithm can be applied to solve the problem. The prox operator

evaluations of the functions, F* and G, yield simple low cost

expressions:

proxrf �
1
bz1ð Þ ¼

bz1 � rWd

1þ r

proxrf �
2
bz2ð Þ ¼ Pk1B bz2ð Þ

proxrf3� bz3ð Þ ¼ Pk2B bz3ð Þ

proxrf �
bs
bzbsð Þ ¼ c

bzbs � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðubsÞ

p
cbs 1

*

cþ r

0
@

1
A

proxsG bxð Þ ¼ bxð Þþ

; (A9)

where PkB( � ) projects its argument onto the norm ball

kB ¼ wjkwk1 � k
� 	

, and ( � )+ projects its argument onto

the non-negative orthant. These expressions are used at each

iteration of the algorithm to update x.

A3 Solving Module 3 with the Chambolle-Pock
Algorithm

Module 3 updates u, while holding x and c constant. Since

x and c are constants, Eq. (5) can be rewritten as

argmin
u

q;uh i þ
Pnb
b¼1

	
Pns
s¼1

ðx1kD
k
bubsk1 þx2kD

?
b ubsk1Þ

subject to
u[0

1Tubp ¼ 1;

(A10)

where qbps ¼
1
2




fbp � cbs





2

for all b, p, and s. The intermedi-

ate variable, q, has the same dimensions and subscript struc-

ture as u. The inner product, 〈�,�〉, takes an element-wise

product between its two arguments and sums the result. To

solve problem 20 with Chambolle-Pock, which solves an

optimization of the form F Kuð Þ þ GðuÞ, we first define our

matrix, K, as well as our functions F and G as

K ¼
h Dk

D?

i

FðyÞ ¼ x1ky1k1|fflfflfflffl{zfflfflfflffl}
f1ðy1Þ

þx2ky2k1|fflfflfflffl{zfflfflfflffl}
f2ðy2Þ

GðuÞ ¼ q; uh i þ
Xnb

b¼1

Xnp

p¼1
IspðubpÞ;

(A11)

where Isp is the indicator function for the probability simplex.

In other words,

IspðubpÞ ¼ IþðubpÞ þ I1ðubpÞ

IþðubpÞ ¼
0 if ubp � 0

1 otherwise

�

I1ðubpÞ ¼
0 if ubp � 0

1 otherwise

�
(A12)

Evaluation of the prox operators of F* and G yield the fol-

lowing expressions.

proxrf �
1
bz1ð Þ ¼ Px1B bz1ð Þ

proxrf �
2
bz2ð Þ ¼ Px2B bz2ð Þ

proxsG buð Þ ¼ PSprow bu � sqð Þ

; (A13)

where PxB( � ) projects its argument onto the norm ball

xB ¼ wjkwk1 �x
� 	

, and PSprowð�Þ projects each row of its

argument onto the probability simplex. Recall that each row

in u is a vector ubp. These simple expressions are used at each

iteration of the Chambolle-Pock algorithm to update u.

A4 The probability simplex projection

Projection onto the probability simplex is defined as

PSp vð Þ ¼ v� g 1
*

� �

þ

; (A14)

where v is a vector, ( � ) projects its argument onto the non-

negative orthant, and g is a scalar that is the solution to the

equation

1T
*

v� g 1
*

� �

þ

¼ 1: (A15)

Since this projection occurs at every iteration, it is impera-

tive to use a fast, low-cost algorithm to project a vector onto

the probability simplex. Wang et al.,48 provided an efficient

algorithm for the projection:

Input :vin 2RD

Sort uin into~v : ~v1�~v2� �� � �~vD

Find j� ¼max 1� j�Dj~vjþ
1

j
1�
Xj

i¼1
~vi

� �
[0

� �

Defineg¼�
1

j�
1�
Xj�

i¼1
~vi

� �

Output : vout ¼ vin�g 1
*

� �

þ

(A16)

Essentially, this algorithm efficiently solves for g to prop-

erly project the argument onto the probability simplex.

a)Author to whom correspondence should be addressed. Electronic mail:

ksheng@mednet.ucla.edu.

REFERENCES

1. Brahme A. Optimization of stationary and moving beam radiation ther-

apy techniques. Radiother Oncol. 1988;12:129–140.

2. Bortfeld T, B€urkelbach J, Boesecke R, Schlegel W. Methods of image

reconstruction from projections applied to conformation radiotherapy.

Phys Med Biol. 1990;35:1423.

Medical Physics, 0 (0), xxxx

13 Nguyen et al.: Deterministic direct aperture optimization 13



3. Webb S. Optimisation of conformal radiotherapy dose distribution by

simulated annealing. Phys Med Biol. 1989;34:1349.

4. Convery D, Rosenbloom M. The generation of intensity-modulated

fields for conformal radiotherapy by dynamic collimation. Phys Med

Biol. 1992;37:1359.

5. Xia P, Verhey LJ. Multileaf collimator leaf sequencing algorithm for

intensity modulated beams with multiple static segments. Med Phys.

1998;25:1424–1434.

6. Zhu L, Lee L, Ma Y, Ye Y, Mazzeo R, Xing L. Using total-varia-

tion regularization for intensity modulated radiation therapy inverse

planning with field-specific numbers of segments. Phys Med Biol.

2008;53:6653.

7. Zhu L, Niu T, Choi K, Xing L. Total-variation regularization based

inverse planning for intensity modulated arc therapy. Technol Cancer

Res Treat. 2012;11:149–162.

8. Zhu L, Xing L. Search for IMRT inverse plans with piecewise constant

fluence maps using compressed sensing techniques. Med Phys.

2009;36:1895–1905.

9. Nguyen D, O’Connor D, Yu VY, et al. Dose domain regularization of

MLC leaf patterns for highly complex IMRT plans. Med Phys.

2015;42:1858–1870.

10. Kirkpatrick S. Optimization by simulated annealing: quantitative studies.

J Stat Phys. 1984;34:975–986.

11. Earl M, Shepard D, Naqvi S, Li X, Yu C. Inverse planning for intensity-

modulated arc therapy using direct aperture optimization. Phys Med

Biol. 2003;48:1075.

12. Shepard DM, Earl MA, Li XA, Naqvi S, Yu C. Direct aperture optimiza-

tion: a turnkey solution for step-and-shoot IMRT. Med Phys.

2002;29:1007–1018.

13. Earl M, Afghan M, Yu C, Jiang Z, Shepard D. Jaws-only IMRT using

direct aperture optimization.Med Phys. 2007;34:307–314.

14. Bergman AM, Bush K, Milette M-P, Popescu IA, Otto K, Duzenli C.

Direct aperture optimization for IMRT using Monte Carlo generated

beamlets. Med Phys. 2006;33:3666–3679.

15. Sui H, PIC CA. Direct aperture optimization.

16. Zhang G, Jiang Z, Shepard D, Zhang B, Yu C. Direct aperture optimiza-

tion of breast IMRT and the dosimetric impact of respiration motion.

Phys Med Biol. 2006;51:N357.

17. Jiang Z, Earl MA, Zhang GW, Yu CX, Shepard DM. An examination of

the number of required apertures for step-and-shoot IMRT. Phys Med

Biol. 2005;50:5653–5663.

18. Mestrovic A, Milette MP, Nichol A, Clark BG, Otto K. Direct aperture

optimization for online adaptive radiation therapy. Med Phys.

2007;34:1631–1646.

19. Cotrutz C, Xing L. Segment-based dose optimization using a genetic

algorithm. Phys Med Biol. 2003;48:2987.

20. Men C, Romeijn HE, Tas�kın ZC, Dempsey JF. An exact approach to

direct aperture optimization in IMRT treatment planning. Phys Med

Biol. 2007;52:7333.

21. Salari E, Unkelbach J. A column-generation-based method for multi-cri-

teria direct aperture optimization. Phys Med Biol. 2013;58:621.

22. Romeijn H, Ahuja R, Dempsey J, Kumar A. A column generation

approach to radiation therapy treatment planning using aperture modula-

tion. SIAM J Optim. 2005;15:838–862.

23. Mumford D, Shah J. Optimal approximations by piecewise smooth func-

tions and associated variational problems. Commun Pure Appl Math.

1989;42:577–685.

24. Vese LA, Chan TF. A multiphase level set framework for image segmen-

tation using the Mumford and Shah model. Int J Comput Vision.

2002;50:271–293.

25. Chambolle A, Pock T. A first-order primal-dual algorithm for convex

problems with applications to imaging. J Math Imaging Vis.

2011;40:120–145.

26. Pock T, Cremers D, Bischof H, Chambolle A. An algorithm for mini-

mizing the Mumford-Shah functional. 2009 IEEE 12th International

Conference on Computer Vision, Kyoto, 2009;1133–1140.

27. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image

Process. 2001;10:266–277.

28. Esedog S, Tsai Y-HR. Threshold dynamics for the piecewise constant

Mumford-Shah functional. J Comput Phys. 2006;211:367–384.

29. Chan TF, Vese LA. A level set algorithm for minimizing the Mumford-

Shah functional in image processing. In: Variational and Level Set

Methods in Computer Vision, 2001. Proceedings. IEEE Workshop on,

161–168. IEEE, 2001.

30. Chan TF, Esedoglu S, Nikolova M. Algorithms for finding global mini-

mizers of image segmentation and denoising models. SIAM Appl Math.

2006;66:1632–1648.

31. Shen X, Diamond S, Udell M, Gu Y, Boyd S. Disciplined multi-convex

programming; 2016.

32. Xu Y, Yin W. A block coordinate descent method for regularized multi-

convex optimization with applications to nonnegative tensor factoriza-

tion and completion. SIAM J Imaging Sci. 2013;6:1758–1789.

33. Nguyen D, Lyu Q, Ruan D, O’Connor D, Low DA, Sheng K. A compre-

hensive formulation for volumetric modulated arc therapy planning.

Med Phys. 2016;43:4263–4272.

34. Pock T, Chambolle A. Diagonal preconditioning for first order primal-

dual algorithms in convex optimization. 2011 International Conference

on Computer Vision, Barcelona, 2011;1762–1769.

35. Condat L. A primal-dual splitting method for convex optimization

involving lipschitzian, proximable and linear composite terms. J Optim

Theory Appl. 2013;158:460–479.

36. Nguyen D, Thomas D, Cao M, O’Connor D, Lamb J, Sheng K. Com-

puterized triplet beam orientation optimization for MRI-guided Co-60

radiotherapy. Med Phys. 2016;43:5667–5675.

37. Dong P, Lee P, Ruan D, et al. 4p Noncoplanar stereotactic body radia-

tion therapy for centrally located or larger lung tumors. Int J Radiat

Oncol Biol Phys. 2013;86:407–413.

38. Dong P, Lee P, Ruan D, et al. 4p Non-Coplanar Liver SBRT: a novel

delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–1366.

39. Nguyen D, Rwigema J-CM, Yu VY, et al. Feasibility of extreme dose

escalation for glioblastoma multiforme using 4p radiotherapy. Radiat

Oncol. 2014;9:1–9.

40. Dong P, Nguyen D, Ruan D, et al. Feasibility of prostate robotic radia-

tion therapy on conventional C-arm linacs. Pract Radiat Oncol.

2014;4:254–260.

41. Dong P, Yu V, Nguyen D, et al. Feasibility of using intermediate x-ray

energies for highly conformal extracranial radiotherapy. Med Phys.

2014;41:041709.

42. Gr�egoire V, Mackie TR. State of the art on dose prescription, reporting

and recording in intensity-modulated radiation therapy (ICRU report No.

83). Cancer/Radioth�er. 2011;15:555–559.

43. Feuvret L, No€el G, Mazeron J-J, Bey P. Conformity index: a review. Int

J Radiat Oncol Biol Phys. 2006;64:333–342.

44. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimiza-

tion and statistical learning via the alternating direction method of multi-

pliers. Foundations Trends� Mach Learn. 2011;3:1–122.

45. Nguyen D, Ruan D, O’Connor D, et al. A novel software and conceptual

design of the hardware platform for intensity modulated radiation ther-

apy. Med Phys. 2016;43:917–929.

46. Parikh N, Boyd S. Proximal algorithms. Foundations Trends Optim.

2013;1:123–231.

47. Golub GH, Van Loan CF. Matrix Computations. Baltimore: Johns Hop-

kins University Press; 1989.

48. Wang W, Carreira-Perpin�an MA. Projection onto the probability sim-

plex: an efficient algorithm with a simple proof, and an application;

2013.

Medical Physics, 0 (0), xxxx

14 Nguyen et al.: Deterministic direct aperture optimization 14


	1. Intro�duc�tion
	fig1

	2. Meth�ods
	2.A. Deter�min�is�tic direct aper�ture opti�miza�tion for�mu�la�tion
	tbl1
	2.A.1 Mod�ule 1
	2.A.2 Mod�ule 2
	2.A.3 Mod�ule 3
	2.A.4 Alter�nat�ing mod�ule sched�ule and other heuris�tics to han�dle non-convexity

	2.B. Sim�u�lated anneal�ing DAO
	2.C. Eval�u�a�tion
	tbl2
	fig2

	3. Results
	tbl3
	tbl4
	fig3
	fig4
	tbl5

	4. Dis�cus�sion
	tbl6
	fig5

	5. Con�clu�sion
	 Acknowl�edge�ments
	 Con�flict of inter�est
	A1 The over�re�laxed Cham�bolle-Pock algo�rithm
	A2 Solv�ing Mod�ule 1 with the Cham�bolle-Pock Algo�rithm
	A3 Solv�ing Mod�ule 3 with the Cham�bolle-Pock Algo�rithm
	A4 The prob�a�bil�ity sim�plex pro�jec�tion
	$^var_corr1
	bib1
	bib2
	bib3
	bib4
	bib5
	bib6
	bib7
	bib8
	bib9
	bib10
	bib11
	bib12
	bib13
	bib14
	bib15
	bib16
	bib17
	bib18
	bib19
	bib20
	bib21
	bib22
	bib23
	bib24
	bib25
	bib26
	bib27
	bib28
	bib29
	bib30
	bib31
	bib32
	bib33
	bib34
	bib35
	bib36
	bib37
	bib38
	bib39
	bib40
	bib41
	bib42
	bib43
	bib44
	bib45
	bib46
	bib47
	bib48


